login
Triangle T read by rows: T(n,k) = binomial(2*n+1,k)*binomial(n,k), n>=0, 0<=k<=n.
1

%I #9 Dec 18 2014 04:07:14

%S 1,1,3,1,10,10,1,21,63,35,1,36,216,336,126,1,55,550,1650,1650,462,1,

%T 78,1170,5720,10725,7722,1716,1,105,2205,15925,47775,63063,35035,6435,

%U 1,136,3808,38080,166600,346528,346528,155584,24310

%N Triangle T read by rows: T(n,k) = binomial(2*n+1,k)*binomial(n,k), n>=0, 0<=k<=n.

%H Marc Chamberland and Karl Dilcher, <a href="http://dx.doi.org/10.1016/j.jnt.2009.05.010">A Binomial Sum Related to Wolstenholme's Theorem</a>, J. Number Theory, Vol. 171, Issue 11 (Nov. 2009), pp. 2659-2672 (see Thm. 2.3).

%e Triangle T begins:

%e .1

%e .1.....3

%e .1....10.....10

%e .1....21.....63......35

%e .1....36....216.....336......126

%e .1....55....550....1650.....1650......462

%e .1....78...1170....5720....10725.....7722.....1716

%e .1...105...2205...15925....47775....63063....35035.....6435

%e .1...136...3808...38080...166600...346528...346528...155584...24310

%t Flatten[Table[Binomial[2*n + 1, k]*Binomial[n, k], {n, 0, 8}, {k, 0, n}]] (* Replace Flatten[] with Grid[] to get the triangle. *)

%Y Cf. A000012 (col. 1), A014105 (col. 2), A001700 (diag), A045721 (row sums).

%Y Cf. A234839, A252355.

%K nonn,tabl

%O 0,3

%A _L. Edson Jeffery_, Dec 17 2014