login
A252462
Shift one instance of the largest prime one step towards smaller primes: a(1) = 1, a(2^n) = 2^(n-1), and for other numbers: a(n) = (n / prime(g)) * prime(g-1), where g = A061395(n), index of the greatest prime dividing n.
7
1, 1, 2, 2, 3, 4, 5, 4, 6, 6, 7, 8, 11, 10, 9, 8, 13, 12, 17, 12, 15, 14, 19, 16, 15, 22, 18, 20, 23, 18, 29, 16, 21, 26, 25, 24, 31, 34, 33, 24, 37, 30, 41, 28, 27, 38, 43, 32, 35, 30, 39, 44, 47, 36, 35, 40, 51, 46, 53, 36, 59, 58, 45, 32, 55, 42, 61, 52, 57, 50, 67, 48, 71, 62, 45, 68, 49, 66, 73, 48, 54, 74, 79, 60
OFFSET
1,3
COMMENTS
Iterating from any n as a(n), a(a(n)), a(a(a(n))), etc. reaches 1 after A056239(n) iterations.
LINKS
FORMULA
a(1) = 1; for n>1: a(n) = A008578(A061395(n)) * A052126(n). [Compare to the similar formula given for A064989.]
a(n) = A008578(1 + A252735(n)) * A052126(n).
Other identities. For all n >= 1:
a(2^n) = 2^(n-1).
For n >= 2, A001222(a(n)) = A001222(n) - A209229(n). [Number of prime divisors decreases only when n is a power of 2 larger than 1.]
MATHEMATICA
a252462[n_Integer] := Block[{a008578, a052126, a061395, a},
a008578[x_] := If[x == 1, 1, Prime[x - 1]];
a052126[x_] := If[x == 1, 1, x/FactorInteger[x][[-1]][[1]]];
a061395[x_] := PrimePi[FactorInteger[x][[-1]][[1]]];
a[1] = 1;
a[x_] := a008578[a061395[x]]*a052126[x];
Array[a, n]]; a252462[84] (* Michael De Vlieger, Dec 21 2014 *)
PROG
(Scheme) (define (A252462 n) (if (= 1 n) n (* (A008578 (A061395 n)) (A052126 n))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 20 2014
STATUS
approved