login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 4 6 or 7
16

%I #4 Dec 17 2014 10:55:06

%S 641,915,602,1142,688,608,1693,1033,914,878,2710,1488,1810,1801,1152,

%T 4342,3057,2971,3954,2993,1603,6941,6178,8430,7575,9643,6164,2617,

%U 12295,10309,20632,26396,20187,24024,13139,4131,20379,24196,38186,74892,85563

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 4 6 or 7

%C Table starts

%C ...641....915...1142....1693.....2710......4342......6941......12295

%C ...602....688...1033....1488.....3057......6178.....10309......24196

%C ...608....914...1810....2971.....8430.....20632.....38186.....110958

%C ...878...1801...3954....7575....26396.....74892....151863.....530739

%C ..1152...2993...9643...20187....85563....302218....652210....2786331

%C ..1603...6164..24024...53028...284379...1190037...2718502...14673858

%C ..2617..13139..59977..139425...920196...4567070..10924203...71981082

%C ..4131..26670.153283..374789..3034712..18926855..47376966..384953455

%C ..6514..55677.389066..987296.10150190..75297774.196667998.2025948930

%C .11116.119785.994207.2598603.32981888.295100889.788158275.9974109278

%H R. H. Hardin, <a href="/A252433/b252433.txt">Table of n, a(n) for n = 1..480</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 27] for n>34

%F k=2: [order 33] for n>37

%F k=3: [order 48] for n>51

%F k=4: [order 72] for n>74

%F k=5: [order 99] for n>101

%F Empirical for row n:

%F n=1: [linear recurrence of order 29] for n>44

%F n=2: [order 27] for n>34

%F n=3: [order 30] for n>34

%F n=4: [order 39] for n>46

%F n=5: [order 54] for n>58

%F n=6: [order 60] for n>67

%F n=7: [order 90] for n>97

%e Some solutions for n=4 k=4

%e ..3..2..2..3..2..2....2..3..2..2..0..0....2..2..3..2..2..3....2..3..2..2..0..2

%e ..2..3..2..2..3..2....2..2..3..2..2..0....1..3..0..1..3..3....2..2..0..2..2..3

%e ..3..0..1..3..0..1....1..0..3..1..3..3....2..3..2..2..3..2....1..3..3..1..3..3

%e ..3..2..2..3..2..2....2..3..2..2..3..2....2..2..3..2..2..3....2..3..2..2..3..2

%e ..2..3..2..2..3..2....2..2..0..2..2..3....1..3..3..1..3..3....2..2..3..2..2..3

%e ..3..0..1..3..3..1....1..3..3..1..3..3....2..0..2..2..0..2....1..0..3..1..3..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 17 2014