login
A252375
a(n) = smallest r such that r^k <= spf(n) and gpf(n) < r^(k+1), for some k >= 0, where spf and gpf (smallest and greatest prime factor of n) are given by A020639(n) and A006530(n).
8
2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 8, 3, 2, 2, 2, 2, 6, 3, 12, 2, 2, 2, 14, 2, 8, 2, 6, 2, 2, 12, 18, 2, 2, 2, 20, 14, 6, 2, 8, 2, 12, 3, 24, 2, 2, 2, 6, 18, 14, 2, 2, 4, 8, 20, 30, 2, 6, 2, 32, 3, 2, 4, 12, 2, 18, 24, 8, 2, 2, 2, 38, 3, 20, 4, 14, 2, 6, 2, 42, 2, 8, 5, 44, 30, 12, 2, 6, 4, 24, 32
OFFSET
1,1
LINKS
FORMULA
If A251725(n) = 1, a(n) = 2, otherwise a(n) = A251725(n).
Other identities. For all n >= 1:
a(n) = a(A066048(n)). [The result depends only on the smallest and the largest prime factor of n.]
PROG
(Scheme)
(define (A252375 n) (let ((spf (A020639 n)) (gpf (A006530 n))) (let outerloop ((r 2)) (let innerloop ((rx 1)) (cond ((and (<= rx spf) (< gpf (* r rx))) r) ((<= rx spf) (innerloop (* r rx))) (else (outerloop (+ 1 r))))))))
(define (A252375 n) (let ((x (A251725 n))) (if (= 1 x) 2 x))) ;; Alternatively, using the implementation of A251725.
CROSSREFS
A252374 gives the corresponding exponents.
Cf. A251726 (those n for which a(n) <= A006530(n)).
Cf. A251727 (those n > 1 for which a(n) = A006530(n)+1).
Sequence in context: A126696 A244464 A250201 * A339170 A257773 A164898
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 17 2014
STATUS
approved