login
A252366
Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 1 3 4 6 or 7
1
1482, 6298, 36078, 192946, 1007920, 5340334, 28210122, 148778446, 786842266, 4159988004, 21966997578, 116024137654, 613090746372, 3239480321376, 17114056075488, 90412646844156, 477674421520058, 2523717154575452
OFFSET
1,1
COMMENTS
Column 5 of A252369
LINKS
FORMULA
Empirical: a(n) = a(n-1) +3*a(n-2) +42*a(n-3) +223*a(n-4) +485*a(n-5) +723*a(n-6) -806*a(n-7) -5802*a(n-8) -7742*a(n-9) -2191*a(n-10) +15114*a(n-11) +38950*a(n-12) +12875*a(n-13) -51485*a(n-14) -62587*a(n-15) -10948*a(n-16) +70876*a(n-17) +106851*a(n-18) +53452*a(n-19) -26830*a(n-20) -86750*a(n-21) -110193*a(n-22) -37947*a(n-23) +2815*a(n-24) +1242*a(n-25) +25129*a(n-26) -34729*a(n-27) -623*a(n-28) -6984*a(n-29) -7065*a(n-30) +17065*a(n-31) -14376*a(n-32) +11137*a(n-33) -9534*a(n-34) +5434*a(n-35) -2728*a(n-36) +1898*a(n-37) -781*a(n-38) +255*a(n-39) -156*a(n-40) +24*a(n-41) +11*a(n-42) -5*a(n-43) for n>45
EXAMPLE
Some solutions for n=4
..0..0..2..0..0..0..0....0..0..0..0..2..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..2..0....2..0..0..0..0..0..2....2..0..0..0..0..2..0
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..2..0..0..0
..2..0..0..0..0..0..0....0..0..0..0..0..2..0....0..2..0..0..0..0..2
..0..0..0..2..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..2..0....2..0..0..0..2..0..0....0..0..2..0..0..2..0
CROSSREFS
Sequence in context: A097024 A253331 A158770 * A253324 A204037 A235411
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 17 2014
STATUS
approved