login
A252352
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum not equal to 0 3 5 6 or 8 and every 3X3 diagonal and antidiagonal sum equal to 0 3 5 6 or 8
9
562, 798, 798, 1331, 1386, 1331, 2176, 2864, 2864, 2176, 4013, 5641, 6986, 5641, 4013, 7109, 12419, 15208, 15208, 12419, 7109, 12670, 29159, 42345, 40756, 42345, 29159, 12670, 23051, 66229, 111519, 137488, 137488, 111519, 66229, 23051, 42677, 155733
OFFSET
1,1
COMMENTS
Table starts
...562....798....1331.....2176......4013.......7109.......12670........23051
...798...1386....2864.....5641.....12419......29159.......66229.......155733
..1331...2864....6986....15208.....42345.....111519......294801.......852023
..2176...5641...15208....40756....137488.....425816.....1312020......4674588
..4013..12419...42345...137488....592230....2400740.....9477253.....42122229
..7109..29159..111519...425816...2400740...11021412....49182987....274849809
.12670..66229..294801..1312020...9477253...49182987...249626459...1786788265
.23051.155733..852023..4674588..42122229..274849809..1786788265..15316883573
.42677.385341.2391671.14943406.176745069.1296591297..9363179389.102558650061
.76847.923811.6526332.47066756.739671776.5991019950.48251359131.715206039341
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 33] for n>39
k=2: [order 33] for n>36
k=3: [order 33] for n>38
k=4: [order 50] for n>53
k=5: [order 62] for n>65
k=6: [order 82] for n>85
EXAMPLE
Some solutions for n=4 k=4
..3..0..1..0..1..3....2..2..0..2..2..3....2..2..0..2..2..3....2..0..0..2..2..3
..3..1..0..1..0..3....0..3..1..3..0..1....2..2..3..2..2..3....2..2..3..2..2..3
..1..0..1..0..1..3....2..2..3..2..2..3....3..0..1..3..3..1....3..0..1..0..3..1
..3..1..0..1..0..3....2..2..3..2..2..3....2..2..3..2..2..3....2..2..3..2..2..0
..3..0..1..0..1..3....0..3..1..0..3..1....2..2..3..2..2..0....2..2..0..2..2..3
..3..1..0..1..0..1....2..2..3..2..2..3....3..3..1..3..3..1....0..3..1..3..0..1
CROSSREFS
Sequence in context: A213867 A139089 A202562 * A252345 A121508 A252344
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2014
STATUS
approved