%I #4 Dec 16 2014 20:12:35
%S 538,2242,10154,43708,184434,783852,3338572,14229718,60618068,
%T 258032046,1098638058,4679093984,19926283674,84850464484,361322860036,
%U 1538671968330,6552292795660,27902184864342,118818430207970
%N Number of (n+2)X(4+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 2 3 or 4
%C Column 4 of A252343
%H R. H. Hardin, <a href="/A252339/b252339.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +6*a(n-2) +20*a(n-3) +54*a(n-4) +38*a(n-5) -41*a(n-6) -191*a(n-7) -285*a(n-8) +296*a(n-9) +753*a(n-10) -160*a(n-11) -791*a(n-12) -99*a(n-13) +334*a(n-14) +98*a(n-15) -18*a(n-16) +54*a(n-17) -3*a(n-18) -35*a(n-19) +3*a(n-20) -12*a(n-21) -7*a(n-22) +4*a(n-23) for n>25
%e Some solutions for n=4
%e ..2..2..2..2..2..1....2..1..2..2..2..2....0..0..0..0..0..0....1..2..2..2..1..2
%e ..2..2..2..2..2..2....2..2..2..2..1..2....0..0..0..0..0..0....2..2..2..2..2..2
%e ..2..2..1..2..2..2....2..2..2..2..2..2....0..0..0..0..0..1....2..2..2..2..2..2
%e ..2..2..2..2..2..2....1..2..2..2..2..2....0..1..0..0..0..0....2..2..2..2..2..2
%e ..2..2..2..1..2..2....2..2..2..2..2..1....0..0..0..0..0..0....1..2..2..1..2..2
%e ..1..2..2..2..2..2....2..1..2..2..1..2....1..0..0..0..0..0....2..2..2..2..2..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 16 2014