login
A252219
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 2 5 6 or 7
9
874, 1212, 1212, 1843, 1078, 1843, 3147, 1437, 1437, 3147, 5011, 2836, 3303, 2836, 5011, 8178, 6674, 10486, 10486, 6674, 8178, 14627, 17478, 35674, 44776, 35674, 17478, 14627, 26610, 47580, 122694, 188866, 188866, 122694, 47580, 26610, 50441
OFFSET
1,1
COMMENTS
Table starts
...874...1212.....1843......3147.......5011........8178........14627
..1212...1078.....1437......2836.......6674.......17478........47580
..1843...1437.....3303.....10486......35674......122694.......420596
..3147...2836....10486.....44776.....188866......801122......3410786
..5011...6674....35674....188866.....984604.....5218112.....27565870
..8178..17478...122694....801122....5218112....34351865....225314934
.14627..47580...420596...3410786...27565870...225314934...1834743852
.26610.130032..1446932..14539238..145417326..1478226841..14935638689
.50441.357094..4990626..61939226..769096658..9717153336.121853394501
.99604.983466.17183216.263654432.4065302226.63795462270.993165752194
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 61] for n>69
k=2: [order 17] for n>25
k=3: [order 18] for n>22
k=4: [order 26] for n>29
k=5: [order 46] for n>48
k=6: [order 74] for n>76
EXAMPLE
Some solutions for n=4 k=4
..2..1..1..1..1..1....1..1..1..2..1..1....2..1..1..1..1..1....3..3..3..3..3..3
..1..1..1..2..1..1....1..1..1..1..1..2....1..1..1..1..1..1....3..3..3..3..3..2
..1..1..1..1..1..2....1..1..2..1..1..1....1..1..1..1..1..1....3..3..3..3..3..3
..1..1..1..1..1..1....1..1..1..1..1..1....1..2..1..1..1..1....3..3..3..3..3..3
..1..2..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..2....3..2..3..3..3..2
..1..1..1..1..1..1....1..1..2..1..1..1....1..1..1..1..1..1....3..3..3..3..2..3
CROSSREFS
Sequence in context: A206312 A252211 A045258 * A252212 A376749 A038658
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 15 2014
STATUS
approved