OFFSET
1,1
COMMENTS
Table starts
....2......3.......4.........5..........6..........7...........8............9
...12.....49.....132.......285........536........917........1464.........2217
...12.....83.....264.......687.......1428.......2729........4680.........7661
...40....369....1872......6361......17092......39109.......79672.......148673
...56....957....6820.....30315.....100894.....277101......654644......1397115
..144...3217...31420....179225.....753200....2485637.....6994984.....17238485
..240...9295..123826....907249....4652710...18231947....59838132....169267931
..544..28977..515268...4728833...29364176..135424961...513937352...1653595049
..992..86267.2058802..23847033..177955614..963247737..4190189694..15244143115
.2112.262541.8332796.120644221.1080135428.6838373877.34020988396.139530739057
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..181
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3)
k=2: [order 14]
k=3: [order 39] for n>40
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = (1/6)*n^4 + (7/3)*n^3 + (29/6)*n^2 + (11/3)*n + 1
n=3: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9); also a polynomial of degree 5 plus a quasipolynomial of degree 2 with period 2
n=4: [linear recurrence of order 23; also a polynomial of degree 6 plus a quasipolynomial of degree 3 with period 12]
EXAMPLE
Some solutions for n=5 k=4
..0....0....2....1....1....1....1....3....3....2....2....2....1....3....0....4
..3....2....1....2....0....1....0....4....4....3....2....2....3....0....2....2
..3....3....4....3....2....2....1....1....4....3....3....4....2....2....3....3
..3....0....0....3....4....2....0....3....4....2....1....3....2....4....4....4
..0....1....3....0....1....3....1....1....1....4....0....2....2....3....2....0
..0....2....1....3....2....3....3....2....1....0....2....3....4....0....2....4
..3....2....2....1....3....1....1....0....2....1....4....2....1....0....1....0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 15 2014
STATUS
approved