%I #8 Dec 01 2018 10:13:08
%S 1600,584,776,1314,1956,2658,4488,7248,10632,17952,28992,42528,71808,
%T 115968,170112,287232,463872,680448,1148928,1855488,2721792,4595712,
%U 7421952,10887168,18382848,29687808,43548672,73531392,118751232
%N Number of (n+2) X (4+2) 0..3 arrays with every 3 X 3 subblock row and column sum equal to 0 2 3 6 or 7 and every 3 X 3 diagonal and antidiagonal sum not equal to 0 2 3 6 or 7.
%H R. H. Hardin, <a href="/A252110/b252110.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-3) for n>8.
%F Empirical g.f.: 2*x*(800 + 292*x + 388*x^2 - 2543*x^3 - 190*x^4 - 223*x^5 - 384*x^6 - 288*x^7) / (1 - 4*x^3). - _Colin Barker_, Dec 01 2018
%e Some solutions for n=4:
%e ..2..1..3..2..2..3....2..1..0..1..2..3....0..1..2..3..2..2....1..0..1..1..0..2
%e ..3..3..1..3..3..1....1..1..0..1..1..0....3..2..2..3..2..2....0..3..0..0..2..0
%e ..2..2..3..2..2..3....0..0..2..0..0..3....0..3..3..1..3..3....1..0..1..1..0..1
%e ..2..2..3..2..2..3....1..1..0..1..1..0....3..2..2..3..2..2....1..0..1..1..0..1
%e ..3..3..1..3..3..0....2..1..0..1..1..0....3..2..2..3..2..1....0..2..0..0..2..0
%e ..2..2..3..2..2..3....0..0..3..0..0..3....0..3..3..0..3..0....1..0..1..1..0..2
%Y Column 4 of A252114.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 14 2014