The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252055 Number of products A000201(i)*A001950(j) = n. 1
 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1, 0, 3, 0, 2, 1, 1, 0, 2, 0, 1, 0, 1, 2, 2, 1, 2, 0, 2, 2, 0, 1, 1, 1, 1, 0, 2, 0, 3, 1, 1, 1, 1, 0, 6, 0, 1, 1, 1, 1, 1, 0, 1, 1, 3, 0, 1, 1, 1, 1, 1, 1, 3, 0, 4, 1, 0, 1, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 COMMENTS A000201 and A001950 are the lower and upper Wythoff sequences, which partition the nonnegative integers. Does this sequence include every nonnegative integer?  What is the maximal number of consecutive 0's?  What is the maximal number of consecutive 1's? LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 EXAMPLE a(312) counts these 7 products:  3*104, 4*78, 6*52, 8*39, 12*26, 24*13, 156*2 MAPLE N:= 1000: # to get a(1) to a(N) A201:= [seq(floor(n*phi), n=1..N)]: A1950:= [seq(floor(n*phi^2), n=1..N)]: A:= Vector(N): for i from 1 to N do   for j from 1 do     m:= A201[i]*A1950[j];     if m > N then break fi;     A[m]:= A[m]+1;    od od: convert(A, list); # Robert Israel, Dec 23 2014 MATHEMATICA r = (1 + Sqrt[5])/2; s = r/(r - 1); t = Flatten[Table[Floor[r*j]*Floor[s*k], {j, 1, 300}, {k, 1, 300}]]; a[n_] := Count[t, n]; u = Table[a[n], {n, 1, 300}] CROSSREFS Cf. A000201, A001950. Sequence in context: A140397 A120614 A287516 * A324144 A320836 A097567 Adjacent sequences:  A252052 A252053 A252054 * A252056 A252057 A252058 KEYWORD nonn,easy AUTHOR Clark Kimberling, Dec 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 19:31 EDT 2021. Contains 343089 sequences. (Running on oeis4.)