|
|
A252043
|
|
a(n) is the concatenation of first n terms of A033307.
|
|
1
|
|
|
1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567891, 12345678910, 123456789101, 1234567891011, 12345678910111, 123456789101112, 1234567891011121, 12345678910111213, 123456789101112131, 1234567891011121314
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
a(n) = floor(C*10^n) with C the Champernowne constant, 0.123456789101112131415..., A033307.
a(n) = floor(A007908(n)/10^n) For n>=10.
|
|
EXAMPLE
|
a(3)=123.
|
|
MAPLE
|
a[0]:= 0;
count:= 0:
for x from 1 to 30 do
L:= convert(x, base, 10);
for i from 1 to nops(L) do
count:= count+1;
a[count]:= a[count-1]*10+L[-i];
od
od:
seq(a[i], i=1..count); # Robert Israel, Jan 11 2015
|
|
MATHEMATICA
|
b[1] = 1
b[n_] := b[n - 1]*10^(Floor[Log[10, 10n]]) + n
Table[Floor[b[n] /10^(n)], {n, 10, 200}]
Module[{nn=20, ch}, ch=RealDigits[ChampernowneNumber[], 10, nn][[1]]; Table[ FromDigits[ Take[ch, n]], {n, nn}]] (* Harvey P. Dale, Aug 31 2015 *)
|
|
CROSSREFS
|
Cf. A007908 (concatenate 1 through n), A033307.
Sequence in context: A037610 A035239 A057137 * A014824 A060555 A138957
Adjacent sequences: A252040 A252041 A252042 * A252044 A252045 A252046
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
José de Jesús Camacho Medina, Dec 15 2014
|
|
EXTENSIONS
|
Definition corrected by Zak Seidov, Jan 18 2015
|
|
STATUS
|
approved
|
|
|
|