OFFSET
1,1
COMMENTS
Table starts
....5.....12......22........35.........51.........70..........92..........117
...10.....43.....120.......265........506........875........1408.........2145
...18....115.....431......1191.......2695.......5340........9615........16098
...34....339....1760......6293......17598......41677.......87328.......166677
...68...1047....7452.....34186.....117980.....334901......822796......1809610
..136...3185...30882....180069.....759084....2556917.....7303048.....18382689
..268...9614..126098....928891....4748562...18846528....62129347....177706943
..528..28997..511108...4735071...29209810..135951349...514829238...1665351547
.1048..87432.2063052..23964561..177862134..968127101..4199965881..15321907453
.2088.263315.8301984.120719043.1076319648.6841930691.33956536010.139504731587
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..221
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -6*a(n-2) +6*a(n-3) -4*a(n-4)
k=2: [order 14] for n>17
Empirical for row n:
n=1: a(n) = (3/2)*n^2 + (5/2)*n + 1
n=2: a(n) = (1/6)*n^4 + (7/3)*n^3 + (23/6)*n^2 + (8/3)*n + 1
n=3: [linear recurrence of order 11; also a polynomial of degree 5 plus a quasipolynomial of degree 1 with period 6]
n=4: [linear recurrence order 18; also a polynomial of degree 5 plus a quasipolynomial of degree 2 with period 12]
EXAMPLE
Some solutions for n=5 k=4
..2....4....3....0....2....1....4....2....0....2....0....2....2....4....2....3
..0....1....4....4....4....1....0....3....4....1....3....4....0....3....1....2
..3....1....4....1....3....4....0....1....1....4....4....2....4....3....1....4
..2....4....2....0....4....1....2....2....2....0....3....3....4....4....2....3
..3....3....4....0....1....2....1....0....2....1....3....2....3....3....4....4
..4....3....2....2....4....0....1....0....1....0....2....1....2....3....3....4
..2....1....1....3....2....3....3....1....0....2....0....1....4....2....1....4
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 11 2014
STATUS
approved