%I #4 Dec 10 2014 16:41:28
%S 1652,2596,3312,5264,9208,16532,23868,39884,71752,133166,215372,
%T 385436,645120,1175522,1992664,3630592,6053132,11027640,18589076,
%U 33876216,57036688,104047908,174874732,318791492,537411108,979946108,1650420932
%N Number of (n+2)X(1+2) 0..3 arrays with every 3X3 subblock row and column sum unequal to 4 or 5 and every diagonal and antidiagonal sum equal to 4 or 5
%C Column 1 of A251905
%H R. H. Hardin, <a href="/A251898/b251898.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +a(n-2) +2*a(n-3) +9*a(n-4) -10*a(n-5) -a(n-6) -36*a(n-7) -33*a(n-8) +10*a(n-9) +9*a(n-10) +153*a(n-11) +118*a(n-12) +103*a(n-13) -44*a(n-14) -277*a(n-15) -339*a(n-16) -323*a(n-17) -38*a(n-18) +308*a(n-19) +458*a(n-20) +453*a(n-21) +179*a(n-22) -164*a(n-23) -310*a(n-24) -306*a(n-25) -144*a(n-26) +4*a(n-27) +74*a(n-28) +92*a(n-29) +40*a(n-30) +10*a(n-31) +18*a(n-32) -12*a(n-34) -4*a(n-35) for n>45
%e Some solutions for n=4
%e ..2..2..2....1..1..1....2..2..2....0..0..1....3..3..3....2..2..3....3..3..1
%e ..1..0..1....2..3..2....1..0..1....0..3..0....1..0..2....1..2..0....2..2..2
%e ..3..0..3....0..2..0....3..0..3....1..3..2....2..3..1....0..3..0....1..2..0
%e ..3..0..3....0..3..0....3..0..3....2..3..1....0..3..0....1..2..0....0..3..0
%e ..1..0..2....2..3..2....2..0..1....0..2..0....0..3..0....2..1..3....2..3..1
%e ..2..3..2....1..1..1....1..0..2....1..2..0....1..0..2....3..3..3....1..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 10 2014