OFFSET
1,2
COMMENTS
Also nonnegative integers x in the solutions to 12*x^2-6*y^2+4*x+4*y+2 = 0, the corresponding values of y being A251896.
LINKS
Colin Barker, Table of n, a(n) for n = 1..653
Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
FORMULA
a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: 2*x^2*(x^3+87*x^2-169*x-15) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
EXAMPLE
30 is in the sequence because N(30)+N(31) = 2640+2821 = 5461 = N(43).
PROG
(PARI) concat(0, Vec(2*x^2*(x^3+87*x^2-169*x-15)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 10 2014
STATUS
approved