%I #4 Dec 09 2014 13:20:37
%S 678,3354,3354,18124,27554,18124,97316,262404,262404,97316,518514,
%T 2298772,4182084,2298772,518514,2764828,20314774,60982362,60982362,
%U 20314774,2764828,14778068,182241310,909331750,1464435968,909331750
%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 3 4 5 or 6
%C Table starts
%C .......678.........3354..........18124.............97316..............518514
%C ......3354........27554.........262404...........2298772............20314774
%C .....18124.......262404........4182084..........60982362...........909331750
%C .....97316......2298772.......60982362........1464435968.........35836727866
%C ....518514.....20314774......909331750.......35836727866.......1454229580342
%C ...2764828....182241310....13666111138......887220145536......59837326193896
%C ..14778068...1624862992...204086278908....21825045338978....2436875668334036
%C ..79010324..14480032642..3052378129920...537093052578680...99399713033369638
%C .422170156.129225388882.45680535734562.13229795888571514.4060471517492016406
%H R. H. Hardin, <a href="/A251836/b251836.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 27] for n>29
%F k=2: [order 65] for n>67
%e Some solutions for n=2 k=4
%e ..0..1..1..0..1..1....0..1..0..1..0..1....0..0..0..1..0..0....0..1..1..0..1..0
%e ..0..0..1..0..1..0....0..0..0..0..1..0....0..0..0..0..0..0....0..0..0..0..1..0
%e ..0..0..0..0..0..1....0..0..0..0..0..0....0..1..0..0..2..0....0..0..1..0..0..1
%e ..0..1..0..0..0..1....0..1..0..0..1..1....0..1..1..0..0..0....0..1..0..0..0..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 09 2014