OFFSET
1,1
COMMENTS
37 is the first irregular prime. The corresponding entry for the second irregular prime 59 is A299466, and for the third irregular prime 67 is A299467.
The p-adic digits of the unique simple zero of the p-adic zeta function zeta_{(p,l)} with (p,l)=(37,32) were used to compute the sequence (see the Mathematica program below). This corresponds with Table A.2 in Kellner (2007). The sequence is increasing, but some consecutive entries are identical, e.g., entries 18 / 19 and 80 / 81. This is caused only by those p-adic digits that are zero.
LINKS
Bernd C. Kellner and Robert G. Wilson v, Table of n, a(n) for n = 1..100
Bernd C. Kellner, The Bernoulli Number Page
Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007), 405-441; arXiv:0409223 [math.NT], 2004.
FORMULA
Numerator(B_{a(n)}) == 0 (mod 37^n).
EXAMPLE
a(3) = 37580 because the numerator of B_37580 is divisible by 37^3 and there is no even integer less than 37580 for which this is the case.
MATHEMATICA
p = 37; l = 32; LD = {7, 28, 21, 30, 4, 17, 26, 13, 32, 35, 27, 36, 32, 10, 21, 9, 11, 0, 1, 13, 6, 8, 10, 11, 10, 11, 32, 13, 30, 10, 6, 8, 2, 12, 1, 8, 2, 5, 3, 10, 19, 8, 4, 7, 19, 27, 33, 29, 29, 11, 2, 23, 8, 34, 5, 8, 35, 35, 13, 31, 29, 6, 7, 22, 13, 29, 7, 15, 22, 20, 19, 29, 2, 14, 2, 2, 31, 11, 4, 0, 27, 8, 10, 23, 17, 35, 15, 32, 22, 14, 7, 18, 8, 3, 27, 35, 33, 31, 6}; CalcIndex[L_, p_, l_, n_] := l + (p - 1) Sum[L[[i + 1]] p^i , {i, 0, n - 2}]; Table[CalcIndex[LD, p, l, n], {n, 1, Length[LD] + 1}] // TableForm
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernd C. Kellner and Robert G. Wilson v, Dec 08 2014
EXTENSIONS
Edited for consistency with A299466 and A299467 by Bernd C. Kellner and Jonathan Sondow, Feb 20 2018
STATUS
approved