login
A251779
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum 3 or 6 and every diagonal and antidiagonal sum not 3 or 6
9
470, 1142, 1142, 2402, 4182, 2402, 4790, 12242, 12242, 4790, 12302, 34934, 43778, 34934, 12302, 27242, 132886, 144818, 144818, 132886, 27242, 55766, 430730, 748002, 524774, 748002, 430730, 55766, 148022, 1317638, 2861058, 3849230, 3849230
OFFSET
1,1
COMMENTS
Table starts
....470.....1142......2402.......4790........12302.........27242..........55766
...1142.....4182.....12242......34934.......132886........430730........1317638
...2402....12242.....43778.....144818.......748002.......2861058........9758786
...4790....34934....144818.....524774......3849230......16580426.......60326174
..12302...132886....748002....3849230.....39849294.....247384810.....1341002006
..27242...430730...2861058...16580426....247384810....1752287522....10300749962
..55766..1317638...9758786...60326174...1341002006...10300749962....63113882510
.148022..5134774..51133714..447979046..13904412166..154175434186..1412118575318
.332738.17297338.198564354.1931849642..89606678130.1105860243970.10829849843426
.688646.54845894.686684594.7044376358.502599987230.6575712526154.66416445639470
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +16*a(n-3) -16*a(n-4) -39*a(n-6) +39*a(n-7) -36*a(n-9) +36*a(n-10)
k=2: [order 31]
k=3: [order 31]
k=4: [order 22]
k=5: [order 85]
k=6: [order 85]
k=7: [order 64]
EXAMPLE
Some solutions for n=3 k=4
..2..3..1..2..0..1....3..3..0..3..0..0....2..1..0..2..1..0....0..3..0..3..0..0
..3..3..0..3..3..0....2..1..3..2..1..3....0..0..3..0..0..3....2..1..3..2..1..0
..1..0..2..1..0..2....1..2..0..1..2..0....1..2..0..1..2..3....1..2..0..1..2..3
..2..3..1..2..3..1....0..3..3..0..3..3....2..1..3..2..1..0....3..0..3..0..3..0
..0..0..3..3..0..0....2..1..3..2..1..0....3..0..3..3..0..3....2..1..3..2..1..0
CROSSREFS
Sequence in context: A345776 A277119 A104744 * A251772 A253518 A254423
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 08 2014
STATUS
approved