login
10-step Fibonacci sequence starting with 0,0,0,0,0,1,0,0,0,0.
8

%I #17 Apr 24 2017 11:26:04

%S 0,0,0,0,0,1,0,0,0,0,1,2,4,8,16,32,63,126,252,504,1008,2015,4028,8052,

%T 16096,32176,64320,128577,257028,513804,1027104,2053200,4104385,

%U 8204742,16401432,32786768,65541360,131018400,261908223,523559418,1046605032,2092182960

%N 10-step Fibonacci sequence starting with 0,0,0,0,0,1,0,0,0,0.

%H Colin Barker, <a href="/A251762/b251762.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1,1,1,1,1,1,1).

%F a(n+10) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6) + a(n+7) + a(n+8) + a(n+9).

%F G.f.: x^5*(1 - x - x^2 - x^3 - x^4) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10). - _Colin Barker_, Apr 24 2017

%t LinearRecurrence[Table[1, {10}], {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, 45] (* _Michael De Vlieger_, Dec 09 2014 *)

%o (PARI) concat(vector(5), Vec(x^5*(1 - x - x^2 - x^3 - x^4) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10) + O(x^50))) \\ _Colin Barker_, Apr 24 2017

%Y Other 10-step Fibonacci sequences are A251759, A251760, A251761, A251763, A251764, A251765, A251766.

%K nonn,easy

%O 0,12

%A _Arie Bos_, Dec 07 2014