%I #4 Dec 06 2014 18:11:29
%S 2257,5065,16467,64309,264983,1116829,4748285,20262955,86674549,
%T 370897287,1587178279,6793752837,29083759187,124506509193,
%U 533008374225,2281819402087,9768583944333,41819863365883,179033174453907
%N Number of (n+2)X(4+2) 0..2 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 2 or 4
%C Column 4 of A251682
%H R. H. Hardin, <a href="/A251678/b251678.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) -4*a(n-2) +20*a(n-3) -52*a(n-4) -71*a(n-5) -88*a(n-6) +18*a(n-7) +1320*a(n-8) +1257*a(n-9) -181*a(n-10) -6879*a(n-11) -11550*a(n-12) +5548*a(n-13) +22299*a(n-14) +34495*a(n-15) -2321*a(n-16) -60516*a(n-17) -74685*a(n-18) -32216*a(n-19) +139323*a(n-20) +165997*a(n-21) +33867*a(n-22) -200557*a(n-23) -240141*a(n-24) +8357*a(n-25) +153626*a(n-26) +134084*a(n-27) -39350*a(n-28) -86744*a(n-29) +83068*a(n-30) +117432*a(n-31) +2542*a(n-32) -255689*a(n-33) -227960*a(n-34) +81803*a(n-35) +313563*a(n-36) +315476*a(n-37) +52784*a(n-38) -112762*a(n-39) -153077*a(n-40) -96828*a(n-41) -39570*a(n-42) -23470*a(n-43) -6008*a(n-44) -2912*a(n-45) +2604*a(n-46) +2560*a(n-47) +1224*a(n-48) +648*a(n-49) -288*a(n-50) for n>54
%e Some solutions for n=4
%e ..2..2..2..1..2..2....0..1..0..0..0..1....0..0..1..0..0..0....1..0..0..0..0..1
%e ..2..2..2..2..2..2....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..1..0..0
%e ..2..2..1..2..2..2....0..0..0..0..1..0....0..0..0..0..0..1....0..1..0..0..0..0
%e ..1..2..2..2..2..1....1..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
%e ..2..1..2..2..2..2....0..0..0..0..0..0....1..0..0..0..1..0....1..0..0..0..0..1
%e ..2..2..1..2..2..2....0..0..0..1..0..0....0..1..0..0..0..0....0..0..0..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 06 2014