Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 06 2014 18:10:33
%S 953,2089,5527,16467,54523,184139,632811,2196747,7647815,26675183,
%T 93098207,325011115,1135034003,3964108395,13844422191,48352496787,
%U 168877391803,589827645215,2060055442119,7195028701059,25129660932207
%N Number of (n+2)X(3+2) 0..2 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 2 or 4
%C Column 3 of A251682
%H R. H. Hardin, <a href="/A251677/b251677.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) -5*a(n-2) +24*a(n-3) -40*a(n-4) +22*a(n-5) -166*a(n-6) +21*a(n-7) +156*a(n-8) +642*a(n-9) +622*a(n-10) -1123*a(n-11) -1546*a(n-12) -1437*a(n-13) +1903*a(n-14) +1798*a(n-15) +496*a(n-16) -1679*a(n-17) -1252*a(n-18) +2364*a(n-19) +3587*a(n-20) +2284*a(n-21) -2954*a(n-22) -4508*a(n-23) -3564*a(n-24) +52*a(n-25) +1420*a(n-26) +1536*a(n-27) +640*a(n-28) +352*a(n-29) +192*a(n-30) +128*a(n-31) +32*a(n-32) for n>37
%e Some solutions for n=4
%e ..0..1..0..0..0....2..2..2..2..2....2..2..2..2..2....2..2..2..2..2
%e ..1..0..0..1..0....1..2..2..2..2....2..2..2..2..2....1..2..2..2..2
%e ..0..0..0..0..0....2..2..2..1..2....1..2..2..2..2....2..2..2..1..2
%e ..0..0..0..0..0....2..2..2..2..2....2..2..1..2..2....2..2..2..2..2
%e ..0..0..0..0..0....2..2..1..2..2....2..2..2..2..2....1..2..2..2..1
%e ..0..1..0..0..1....1..2..2..2..1....2..1..2..2..2....2..2..2..2..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 06 2014