login
A251652
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 0 2 4 5 7 or 9
9
376, 448, 448, 738, 908, 738, 1248, 1928, 1928, 1248, 2382, 4008, 4522, 4008, 2382, 4140, 10248, 9918, 9918, 10248, 4140, 6978, 22904, 31022, 24706, 31022, 22904, 6978, 13532, 49956, 74194, 98306, 98306, 74194, 49956, 13532, 23574, 129296, 163318
OFFSET
1,1
COMMENTS
Table starts
...376....448.....738.....1248......2382.......4140.......6978........13532
...448....908....1928.....4008.....10248......22904......49956.......129296
...738...1928....4522.....9918.....31022......74194.....163318.......509054
..1248...4008....9918....24706.....98306.....245842.....610082......2470626
..2382..10248...31022....98306....482506....1563586....5248890.....25151338
..4140..22904...74194...245842...1563586....5167050...17185778....108553714
..6978..49956..163318...610082...5248890...17185778...63447690....562400186
.13532.129296..509054..2470626..25151338..108553714..562400186...5347152010
.23574.300656.1221194..6167962..86588602..360921738.1826236602..25341349658
.39904.689192.2704574.15277218.309874186.1210167730.6707952986.141755834794
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +5*a(n-3) -7*a(n-4) -12*a(n-5) +6*a(n-6) +6*a(n-7) for n>14
k=2: [order 9] for n>15
k=3: [order 9] for n>13
k=4: a(n) = 3*a(n-1) +23*a(n-3) -77*a(n-4) +78*a(n-6) -26*a(n-7) for n>11
k=5: [order 11] for n>14
k=6: [order 11] for n>15
k=7: [order 8] for n>13
EXAMPLE
Some solutions for n=4 k=4
..1..0..2..1..0..2....2..1..0..2..1..0....3..0..3..0..3..0....1..1..1..1..1..1
..1..3..2..1..3..2....3..2..1..3..2..1....1..1..1..1..1..1....3..0..3..0..3..0
..1..0..2..1..0..2....1..0..2..1..3..2....2..2..2..2..2..2....2..2..2..2..2..2
..1..3..2..1..0..2....2..1..3..2..1..0....3..3..0..3..3..0....1..1..1..1..1..1
..1..0..2..1..3..2....0..2..1..0..2..1....1..1..1..1..1..1....3..0..3..3..0..0
..1..0..2..1..3..2....1..0..2..1..0..2....2..2..2..2..2..2....2..2..2..2..2..2
CROSSREFS
Sequence in context: A045200 A252071 A247263 * A251645 A259769 A238231
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 06 2014
STATUS
approved