login
A251643
Smallest composite c such that F_(c-(c/p)) == 0 (mod c) with p = prime(n), F_k = A000045(k) and a/b the Kronecker symbol.
1
12, 12, 25, 168, 660, 323, 377, 442, 552, 442, 323, 1891, 442, 323, 323, 323, 377, 323, 377, 323, 323, 323, 323, 323, 442, 377, 442, 323, 377, 377, 377, 377, 2834, 442, 377, 377, 377, 2834, 323, 442, 1891, 442, 323, 442, 323, 1891, 323, 377, 323, 442, 323, 323
OFFSET
1,1
LINKS
PROG
(PARI) forprime(p=1, 1e3, c=2; while(Mod(fibonacci(c-kronecker(c, p)), c)!=0 || ispseudoprime(c), c++); print1(c, ", "))
CROSSREFS
Sequence in context: A174020 A173549 A299853 * A346531 A070710 A048759
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Dec 19 2014
STATUS
approved