|
|
A251628
|
|
Number of lattice points of the Archimedean tiling (3,4,6,4) on the circles R(n) = sqrt(A249870(n) + A249871(n)* sqrt(3)) around any lattice point. First differences of A251627.
|
|
4
|
|
|
1, 4, 2, 2, 4, 1, 4, 7, 4, 4, 2, 4, 4, 2, 4, 2, 4, 2, 2, 4, 6, 4, 4, 2, 4, 6, 4, 4, 2, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 1, 2, 4, 4, 2, 12, 2, 4, 1, 4, 4, 4, 4, 2, 4, 2, 4, 6, 4, 4, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 6, 4, 2, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The squares of the increasing radii of the lattice point hitting circles for the Archimedean tiling (3,4,6,4) are given in A249870 and A249871.
See the notes given in a link under A251627.
|
|
LINKS
|
Table of n, a(n) for n=0..80.
|
|
FORMULA
|
a(n) = A251627(n) - A251627(n-1), for n >= 1 and a(0) = 1.
|
|
EXAMPLE
|
n = 4: on the circle with R(4) = sqrt(2 + sqrt(3)), approximately 1.932, around any lattice point lie a(4) = 4 points, namely in Cartesian coordinates, [+/-(1 + sqrt(3)/2), 1/2] and [+/-(1/2), -(1 + sqrt(3)/2)].
|
|
CROSSREFS
|
Cf. A249870, A249871, A251627.
Sequence in context: A275745 A053879 A216671 * A170988 A141035 A100854
Adjacent sequences: A251625 A251626 A251627 * A251629 A251630 A251631
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Wolfdieter Lang, Dec 09 2014
|
|
STATUS
|
approved
|
|
|
|