%I #8 Apr 30 2024 23:08:44
%S 2,3,4,5,6,7,10,11,13,17,18,19,23,29,31,37,41,43,47,53,59,61,67,71,73,
%T 79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,
%U 173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257
%N Distinct terms in A251416.
%C A251417(n) gives number of repetitions of a(n) in A251416;
%C a(n) = prime(n-4) for n > 11 according to Bradley Klee's conjecture, empirically confirmed for the first 10000 primes;
%C equivalently: A098551(a(n)) = A251239(n-4) for n > 11.
%H Reinhard Zumkeller, <a href="/A251595/b251595.txt">Table of n, a(n) for n = 1..10000</a>
%e . n | a(n) | A151417(n) | A098551(a(n))
%e . ----+--------------+------------+--------------
%e . 1 | 2 | 1 | 2
%e . 2 | 3 | 1 | 3
%e . 3 | 4 = 2*2 | 1 | 4
%e . 4 | 5 | 5 | 9
%e . 5 | 6 = 2*3 | 1 | 10
%e . 6 | 7 | 5 | 15
%e . 7 | 10 = 2*5 | 1 | 16
%e . 8 | 11 | 6 | 22
%e . 9 | 13 | 1 | 23
%e . 10 | 17 | 7 | 30
%e . 11 | 18 = 2*3*3 | 1 | 31
%e . 12 | 19 | 12 | 43
%e . 13 | 23 | 8 | 51
%e . 14 | 29 | 10 | 61
%e . 15 | 31 | 1 | 62
%e . 16 | 37 | 17 | 79
%e . 17 | 41 | 8 | 87
%e . 18 | 43 | 1 | 88
%e . 19 | 47 | 13 | 101
%e . 20 | 53 | 13 | 114
%e . 21 | 59 | 13 | 127
%e . 22 | 61 | 5 | 132
%e . 23 | 67 | 10 | 142
%e . 24 | 71 | 11 | 153
%e . 25 | 73 | 5 | 158
%e The last column gives the position of a(n) in A098550.
%o (Haskell)
%o import Data.List (group)
%o a251595 n = a251595_list !! (n-1)
%o a251595_list = map head $ group a251416_list
%Y Cf. A098550, A098551, A251416, A251417, A251239.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Dec 05 2014