login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251578 E.g.f.: exp(8*x*G(x)^7) / G(x)^7 where G(x) = 1 + x*G(x)^8 is the g.f. of A007556. 11
1, 1, 8, 176, 6896, 397888, 30584128, 2948178304, 342418882688, 46582810477568, 7268517454045184, 1279982790328858624, 251155319283837571072, 54344039464582833577984, 12855960226911391575670784, 3301167001281829056285458432, 914476489427649778704952819712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..16.

FORMULA

Let G(x) = 1 + x*G(x)^8 be the g.f. of A007556, then the e.g.f. A(x) of this sequence satisfies:

(1) A'(x)/A(x) = G(x)^7.

(2) A'(x) = exp(8*x*G(x)^7).

(3) A(x) = exp( Integral G(x)^7 dx ).

(4) A(x) = exp( Sum_{n>=1} A234466(n-1)*x^n/n ), where A234466(n-1)(n) = binomial(8*n-2,n)/(7*n-1).

(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251588.

(6) A(x) = Sum_{n>=0} A251588(n)*(x/A(x))^n/n! and

(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251588(n),

where A251588(n) = 8^(n-6) * (n+1)^(n-8) * (16807*n^6 + 143031*n^5 + 525875*n^4 + 1074745*n^3 + 1294846*n^2 + 876856*n + 262144).

a(n) = Sum_{k=0..n} 8^k * n!/k! * binomial(8*n-k-8, n-k) * (k-1)/(n-1) for n>1.

Recurrence: 7*(7*n-13)*(7*n-12)*(7*n-11)*(7*n-10)*(7*n-9)*(7*n-8)*(4096*n^6 - 66048*n^5 + 446400*n^4 - 1620808*n^3 + 3339890*n^2 - 3711613*n + 1743218)*a(n) = 128*(536870912*n^13 - 14831058944*n^12 + 188986949632*n^11 - 1471608258560*n^10 + 7817645654016*n^9 - 29941451735040*n^8 + 85134250240000*n^7 - 182149348773632*n^6 + 293626158621632*n^5 - 352753169299376*n^4 + 307548490429492*n^3 - 184675145918224*n^2 + 68635535585133*n - 11961900200250)*a(n-1) + 16777216*(4096*n^6 - 41472*n^5 + 177600*n^4 - 413768*n^3 + 556826*n^2 - 414321*n + 135135)*a(n-2). - Vaclav Kotesovec, Dec 07 2014

a(n) ~ 8^(8*(n-1)-1/2) / 7^(7*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 8*x^2/2! + 176*x^3/3! + 6896*x^4/4! + 397888*x^5/5! +...

such that A(x) = exp(8*x*G(x)^7) / G(x)^7

where G(x) = 1 + x*G(x)^8 is the g.f. of A007556:

G(x) = 1 + x + 8*x^2 + 92*x^3 + 1240*x^4 + 18278*x^5 + 285384*x^6 +...

Note that

A'(x) = exp(8*x*G(x)^7) = 1 + 8*x + 176*x^2/2! + 6896*x^3/3! +...

LOGARITHMIC DERIVATIVE.

The logarithm of the e.g.f. begins:

log(A(x)) = x + 7*x^2/2 + 77*x^3/3 + 1015*x^4/4 + 14763*x^5/5 +...

and so A'(x)/A(x) = G(x)^7.

TABLE OF POWERS OF E.G.F.

Form a table of coefficients of x^k/k! in A(x)^n as follows.

n=1: [1, 1,   8,  176,   6896,  397888,  30584128,  2948178304, ...];

n=2: [1, 2,  18,  400,  15584,  892896,  68217472,  6543183488, ...];

n=3: [1, 3,  30,  678,  26352, 1501344, 114073632, 10890011520, ...];

n=4: [1, 4,  44, 1016,  39512, 2241472, 169479808, 16107837568, ...];

n=5: [1, 5,  60, 1420,  55400, 3133560, 235931200, 22331561600, ...];

n=6: [1, 6,  78, 1896,  74376, 4200048, 315106128, 29713474944, ...];

n=7: [1, 7,  98, 2450,  96824, 5465656, 408881872, 38425052848, ...];

n=8: [1, 8, 120, 3088, 123152, 6957504, 519351232, 48658878080, ...]; ...

in which the main diagonal begins (see A251587):

[1, 2, 30, 1016, 55400, 4200048, 408881872, 48658878080, ...]

and is given by the formula:

[x^n/n!] A(x)^(n+1) = 8^(n-6) * (n+1)^(n-7) * (16807*n^6 + 143031*n^5 + 525875*n^4 + 1074745*n^3 + 1294846*n^2 + 876856*n + 262144) for n>=0.

MATHEMATICA

Flatten[{1, 1, Table[Sum[8^k * n!/k! * Binomial[8*n-k-8, n-k] * (k-1)/(n-1), {k, 0, n}], {n, 2, 20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)

PROG

(PARI) {a(n) = local(G=1); for(i=1, n, G=1+x*G^8 +x*O(x^n)); n!*polcoeff(exp(8*x*G^7)/G^7, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = if(n==0|n==1, 1, sum(k=0, n, 8^k * n!/k! * binomial(8*n-k-8, n-k) * (k-1)/(n-1) ))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A251588, A251668, A007556, A234466.

Cf. Variants: A243953, A251573, A251574, A251575, A251576, A251577, A251579, A251580.

Sequence in context: A220749 A221631 A064342 * A099175 A000839 A001596

Adjacent sequences:  A251575 A251576 A251577 * A251579 A251580 A251581

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:26 EDT 2019. Contains 322446 sequences. (Running on oeis4.)