login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251577 E.g.f.: exp(7*x*G(x)^6) / G(x)^6 where G(x) = 1 + x*G(x)^7 is the g.f. of A002296. 11
1, 1, 7, 133, 4501, 224497, 14926387, 1245099709, 125177105641, 14743403405857, 1991987858095039, 303781606238806549, 51624122993243471293, 9674836841745014156497, 1982441139367342976694379, 440946185623028320815311053, 105810290178441439797537070033, 27247415403508413760437930799681 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..17.

FORMULA

Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then the e.g.f. A(x) of this sequence satisfies:

(1) A'(x)/A(x) = G(x)^6.

(2) A'(x) = exp(7*x*G(x)^6).

(3) A(x) = exp( Integral G(x)^6 dx ).

(4) A(x) = exp( Sum_{n>=1} A130565(n)*x^n/n ), where A130565(n) = binomial(7*n-2,n)/(6*n-1).

(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251587.

(6) A(x) = Sum_{n>=0} A251587(n)*(x/A(x))^n/n! and

(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251587(n),

where A251587(n) = 7^(n-5) * (n+1)^(n-7) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807).

a(n) = Sum_{k=0..n} 7^k * n!/k! * binomial(7*n-k-7, n-k) * (k-1)/(n-1) for n>1.

Recurrence: 72*(2*n-3)*(3*n-5)*(3*n-4)*(6*n-11)*(6*n-7)*(2401*n^5 - 32585*n^4 + 178311*n^3 - 492779*n^2 + 689623*n - 392491)*a(n) = 7*(282475249*n^11 - 6658345155*n^10 + 71339412375*n^9 - 458968749330*n^8 + 1971937124661*n^7 - 5947597074909*n^6 + 12867618998885*n^5 - 20002508046570*n^4 + 21938241804255*n^3 - 16207858252075*n^2 + 7281095411817*n - 1512276480000)*a(n-1) - 823543*(2401*n^5 - 20580*n^4 + 71981*n^3 - 129346*n^2 + 120663*n - 47520)*a(n-2). - Vaclav Kotesovec, Dec 07 2014

a(n) ~ 7^(7*(n-1)-1/2) / 6^(6*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 7*x^2/2! + 133*x^3/3! + 4501*x^4/4! + 224497*x^5/5! +...

such that A(x) = exp(7*x*G(x)^6) / G(x)^6

where G(x) = 1 + x*G(x)^7 is the g.f. of A002296:

G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 +...

Note that

A'(x) = exp(7*x*G(x)^6) = 1 + 7*x + 133*x^2/2! + 4501*x^3/3! +...

LOGARITHMIC DERIVATIVE.

The logarithm of the e.g.f. begins:

log(A(x)) = x + 6*x^2/2 + 57*x^3/3 + 650*x^4/4 + 8184*x^5/5 + 109668*x^6/6 +...

and so A'(x)/A(x) = G(x)^6.

TABLE OF POWERS OF E.G.F.

Form a table of coefficients of x^k/k! in A(x)^n as follows.

n=1: [1, 1,  7,   133,  4501,  224497,  14926387,  1245099709, ...];

n=2: [1, 2,  16,  308, 10360,  512624,  33845728,  2807075264, ...];

n=3: [1, 3,  27,  531, 17829,  876771,  57529143,  4745597787, ...];

n=4: [1, 4,  40,  808, 27184, 1331008,  86864512,  7129675840, ...];

n=5: [1, 5,  55, 1145, 38725, 1891205, 122869075, 10038831425, ...];

n=6: [1, 6,  72, 1548, 52776, 2575152, 166702752, 13564381824, ...];

n=7: [1, 7,  91, 2023, 69685, 3402679, 219682183, 17810832319, ...];

n=8: [1, 8, 112, 2576, 89824, 4395776, 283295488, 22897384832, ...]; ...

in which the main diagonal begins (see A251587):

[1, 2, 27, 808, 38725, 2575152, 219682183, 22897384832, ...]

and is given by the formula:

[x^n/n!] A(x)^(n+1) = 7^(n-5) * (n+1)^(n-6) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807) for n>=0.

MATHEMATICA

Flatten[{1, 1, Table[Sum[7^k * n!/k! * Binomial[7*n-k-7, n-k] * (k-1)/(n-1), {k, 0, n}], {n, 2, 20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)

PROG

(PARI) {a(n) = local(G=1); for(i=1, n, G=1+x*G^7 +x*O(x^n)); n!*polcoeff(exp(7*x*G^6)/G^6, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = if(n==0|n==1, 1, sum(k=0, n, 7^k * n!/k! * binomial(7*n-k-7, n-k) * (k-1)/(n-1) ))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A251587, A251667, A002296, A130565.

Cf. Variants: A243953, A251573, A251574, A251575, A251576, A251578, A251579, A251580.

Sequence in context: A245318 A274788 A274258 * A082164 A229464 A317216

Adjacent sequences:  A251574 A251575 A251576 * A251578 A251579 A251580

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 14:27 EDT 2019. Contains 322310 sequences. (Running on oeis4.)