login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = floor(prime(n)/log(n)) + ceiling(prime(n)/log(prime(n))) - 2*n, n >=2.
1

%I #29 Nov 12 2024 09:06:18

%S 3,2,1,1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0,-1,0,-1,0,2,0,0,-1,-2,-3,1,0,1,

%T 0,1,1,1,0,0,0,1,-1,1,0,-1,-3,0,3,2,1,0,0,-2,0,1,1,1,-1,-1,-2,-3,-2,2,

%U 1,-1,-1,2,1,3,2,1,1,2,1,1,1,1,2,0,2,3,1,3,1,1,0,0,1,0,-2,-3,-1,0,0,0,-1,-1,1,-1,3

%N a(n) = floor(prime(n)/log(n)) + ceiling(prime(n)/log(prime(n))) - 2*n, n >=2.

%C The prime number theorem implies prime(n)/log(prime(n)) < n < prime(n)/log(n), n >= 2. From this follows a(n).

%H Michael De Vlieger, <a href="/A251482/b251482.txt">Table of n, a(n) for n = 2..10000</a>

%F a(n) = A085581(n) + (A086861(n) + 1) - 2*n.

%e a(4) = floor(5.04...) + ceiling(3.59...) - 2*4 = 5 + 4 - 2*4 = 1.

%t a251482[n_Integer] :=

%t Floor[Prime[#]/Log[#]] + Ceiling[Prime[#]/Log[Prime[#]]] - 2 # & /@

%t Range[2, n]; a251482[100] (* _Michael De Vlieger_, Dec 15 2014 *)

%o (PARI) vector(100,n,floor(prime(n+1)/log(n+1))+ceil(prime(n+1)/log(prime(n+1)))-2*n-2) \\ _Derek Orr_, Dec 30 2014

%o (Magma) [Floor(NthPrime(n)/Log(n)) + Ceiling(NthPrime(n)/Log(NthPrime(n))) - 2*n: n in [2..100]]; // _Vincenzo Librandi_, Mar 25 2015

%Y Cf. A086861 (floor(prime(n)/log(prime(n)))), A085581 (floor(prime(n)/log(n))).

%Y Cf. A087724 (-PrimePi(n) + floor(prime(n)/log(n)) - 2), A000720 (pi(n)).

%Y Cf. A060715 (Number of primes between n and 2n exclusive).

%K sign,easy

%O 2,1

%A _Freimut Marschner_, Dec 07 2014