login
(A251413(n) + 1)/2.
3

%I #22 Jan 08 2015 21:10:40

%S 1,2,3,5,13,11,28,4,6,18,17,25,8,39,14,46,23,7,26,33,9,20,43,29,58,10,

%T 12,48,35,63,32,73,41,15,38,102,47,60,16,53,171,44,61,56,72,19,50,93,

%U 59,78,62,88,21,67,103,74,108

%N (A251413(n) + 1)/2.

%C Conjectured to be a permutation of the natural numbers.

%D L. Edson Jeffery, Posting to Sequence Fans Mailing List, Dec 01 2014

%H N. J. A. Sloane, <a href="/A251414/b251414.txt">Table of n, a(n) for n = 1..11945</a>

%H David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, <a href="http://arxiv.org/abs/1501.01669">The Yellowstone Permutation</a>, arXiv preprint arXiv:1501.01669, 2015.

%t max = 57; f = True; a = {1, 3, 5}; NN = Range[4, 1000]; s = 2*NN - 1; While[TrueQ[f], For[k = 1, k <= Length[s], k++, If[Length[a] < max, If[GCD[a[[-1]], s[[k]]] == 1 && GCD[a[[-2]], s[[k]]] > 1, a = Append[a, s[[k]]]; s = Delete[s, k]; k = 0; Break], f = False]]]; Table[(a[[n]] + 1)/2, {n, max}] (* _L. Edson Jeffery_, Dec 02 2014 *)

%o (Python)

%o from __future__ import division

%o from fractions import gcd

%o A251414_list, l1, l2, s, b = [1,2,3], 5, 3, 7, {}

%o for _ in range(1,10**2):

%o ....i = s

%o ....while True:

%o ........if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:

%o ............A251414_list.append((i+1)//2)

%o ............l2, l1, b[i] = l1, i, True

%o ............while s in b:

%o ................b.pop(s)

%o ................s += 2

%o ............break

%o ........i += 2 # _Chai Wah Wu_, Dec 07 2014

%Y Cf. A098550, A251413.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Dec 02 2014