Maple-assisted proof of formula for A251367

Robert Israel

19 March 2018
Of the $3^{6}=729$ possible configurations for a 2×3 subblock (where $[a, b, c, d, e, f]$ encodes $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$, 695 have both 2×2 subblocks summing to 1 to 7 .

```
>> Blockconfigs:= select(t -> {t[1]+t[2]+t[4]+t[5], t[2]+t[3]+t[5]+t
    [6]} subset {$1..7}, [seq(convert(x,base,3)[1..6],x=3^6+1.
    .3^6+3^6)]):
    nops(Blockconfigs);
```

Consider the 695×695 transition matrix T such that $T_{i j}=1$ if the bottom two rows of a 3×3 sub-array could be in configuration i while the top two rows are in configuration j (i.e. the middle row is compatible with both i and j), and 0 otherwise. The following Maple code computes it.

```
[> T:= Matrix(695,695,(i,j) -> `if`(Blockconfigs[i][1..3]=
    Blockconfigs[j][4..6],1,0));
```

$$
T:=\left[\begin{array}{c}
695 \times 695 \text { Matrix } \tag{2}\\
\text { Data Type: anything } \\
\text { Storage: rectangular } \\
\text { Order: Fortran_order }
\end{array}\right]
$$

Thus for $n \geq 1, \quad a(n)=u T^{n-1} v$ where u and v are 695-dimensional row and column vectors respectively of all 1's. The following Maple code produces these vectors.

```
> u:= Vector[row] (695, 1):
    v:= Vector(695,1):
```

To check, here are the first few entries of our sequence.

$$
\left[\begin{array}{l}
>\text { vn }[0]:=\mathrm{v}: \\
\quad \text { for } \mathrm{n} \text { from } 1 \text { to } 11 \text { do vn }[\mathrm{n}]:=\mathrm{T} . \operatorname{vn}[\mathrm{n}-1] \text { od: } \\
\text { seq (u vn } \mathrm{n}-1], \mathrm{n}=1 \ldots 11) ; \\
695,17969,464393,12002283,310199103,8017100977,207202101873,5355141623323, \tag{3}\\
\quad 138403720518311,3577046360518609,92448820142650873
\end{array}\right.
$$

Now here is the minimal polynomial P of T, as computed by Maple.
[>P:= LinearAlgebra:-MinimalPolynomial (T, t);

$$
\begin{equation*}
P:=t^{8}-19 t^{7}-165 t^{6}-311 t^{5}+70 t^{4}+332 t^{3}-136 t^{2} \tag{4}
\end{equation*}
$$

The empirical formula corresponds to a factor of this: $t^{3}-24 t^{2}-49 t+34$.

$$
\begin{align*}
& \begin{array}{l}
>Q:=\text { normal }\left(\mathrm{P} /\left(\mathrm{t}^{\wedge} 3-24 * \mathrm{t}^{\wedge} 2-49 * \mathrm{t}+34\right)\right) ; \\
\\
\text { If } \\
\\
r(n)=\left(t^{3}+5 t^{2}+4 t-4\right) t^{2}
\end{array} \\
& \hline(n+3)-24 a(n+2)-49 a(n+1)+34 a(n)=u \cdot\left(T^{n+2}-24 T^{n+1}-49 T^{n}\right. \tag{5}
\end{align*}
$$

$$
\left.+34 T^{n-1}\right) v
$$

, then $r(n+3)+5 r(n+2)+4 r(n+1)-4 r(n)=u T^{n-3} P(t) v=0$ for $n \geq 3$.
In order to check that the empirical formula is true, it suffices to verify $r(n)=0$ for $n=1 \ldots 5$.
$\left[\begin{array}{c}>\operatorname{seq}(u \quad(\operatorname{vn}[n+2]-24 * \operatorname{vn}[n+1]-49 * v n[n]+34 * v n[n-1]), n=1.5) ; ~ \\ 0,0,0,0,0\end{array}\right.$

