Maple-assisted proof of formula for A251366

Robert Israel

19 March 2018
Of the $3^{4}=81$ possible configurations for a 2×2 subblock (where $[a, b, c, d]$ encodes $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, all but two sum to 1 to 7 .

$$
\left[\begin{array}{l}
>\text { Blockconfigs:= [seq (convert (x,base, 3) [1..4], x=3^5+1..3^5+79)]; } \\
\text { Blockconfigs := [[1, 0, 0, 0], [2, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 0], [2, 1, 0, 0], [0, 2, 0, 0], [1, } \\
\quad 2,0,0],[2,2,0,0],[0,0,1,0],[1,0,1,0],[2,0,1,0],[0,1,1,0],[1,1,1,0],[2,1,1, \\
\quad 0],[0,2,1,0],[1,2,1,0],[2,2,1,0],[0,0,2,0],[1,0,2,0],[2,0,2,0],[0,1,2,0], \\
\quad[1,1,2,0],[2,1,2,0],[0,2,2,0],[1,2,2,0],[2,2,2,0],[0,0,0,1],[1,0,0,1],[2,0, \\
\quad 0,1],[0,1,0,1],[1,1,0,1],[2,1,0,1],[0,2,0,1],[1,2,0,1],[2,2,0,1],[0,0,1,1], \\
\quad[1,0,1,1],[2,0,1,1],[0,1,1,1],[1,1,1,1],[2,1,1,1],[0,2,1,1],[1,2,1,1],[2,2, \\
\quad 1,1],[0,0,2,1],[1,0,2,1],[2,0,2,1],[0,1,2,1],[1,1,2,1],[2,1,2,1],[0,2,2,1], \\
\quad[1,2,2,1],[2,2,2,1],[0,0,0,2],[1,0,0,2],[2,0,0,2],[0,1,0,2],[1,1,0,2],[2,1, \\
0,2],[0,2,0,2],[1,2,0,2],[2,2,0,2],[0,0,1,2],[1,0,1,2],[2,0,1,2],[0,1,1,2], \\
{[1,1,1,2],[2,1,1,2],[0,2,1,2],[1,2,1,2],[2,2,1,2],[0,0,2,2],[1,0,2,2],[2,0,} \\
2,2],[0,1,2,2],[1,1,2,2],[2,1,2,2],[0,2,2,2],[1,2,2,2]]
\end{array}\right.
$$

Consider the 79×79 transition matrix T such that $T_{i j}=1$ if the bottom two rows of a 3×2 sub-array could be in configuration i while the top two rows are in configuration j (i.e. the middle row is compatible with both i and j), and 0 otherwise. The following Maple code computes it.

```
[> T:= Matrix(79,79,(i,j) -> `if`(Blockconfigs[i][1..2]=Blockconfigs
    [j][3..4],1,0));
```

$$
T:=\left[\begin{array}{c}
79 \times 79 \text { Matrix } \tag{2}\\
\text { Data Type: anything } \\
\text { Storage: rectangular } \\
\text { Order: Fortran_order }
\end{array}\right]
$$

Thus for $n \geq 1, a(n)=u T^{n-1} v$ where u and v are 79-dimensional row and column vectors respectively of all 1's. The following Maple code produces these vectors.
$\left[\begin{array}{l}>\mathrm{u}:=\operatorname{Vector}[\text { row }](79,1): \\ \mathrm{v}:=\operatorname{Vector}(79,1):\end{array}\right.$
To check, here are the first few entries of our sequence.
[$>$ seq (u . T^ $(\mathrm{n}-1)$. v, $\mathrm{n}=1 \ldots 11$);
$79,695,6113,53769,472943,4159927,36590017,321839625,2830847119,24899654327$,
Now here is the minimal polynomial P of T, as computed by Maple.
「> P:= LinearAlgebra:-MinimalPolynomial (T, t);

$$
\begin{equation*}
P:=t^{5}-7 t^{4}-15 t^{3}-7 t^{2} \tag{4}
\end{equation*}
$$

The empirical formula corresponds to a factor of this.
> factor (P) ;

$$
\begin{equation*}
t^{2}(t+1)\left(t^{2}-8 t-7\right) \tag{5}
\end{equation*}
$$

If $r(n)=a(n+3)-8 a(n+2)-7 a(n+1)=u \cdot\left(T^{n+2}-8 T^{n+1}-7 T^{n}\right) v$, then $r(n)+r(n+1)=u T^{n}(T+I)\left(T^{2}-8 T-7 I\right) v=0$ for $n \geq 2$.
Given that $r(0)=r(1)=r(2)=0$, we conclude that all $r(n)=0$, i.e. the empirical formula is true.

