login
A251308
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements less than the maximum of its antidiagonal elements
8
196, 2292, 2292, 26664, 82241, 26664, 310224, 2986712, 2986712, 310224, 3609989, 108857571, 338614056, 108857571, 3609989, 42010273, 3969434142, 38343620608, 38343620608, 3969434142, 42010273, 488885832, 144740268503, 4336649865709
OFFSET
1,1
COMMENTS
Table starts
.....196.......2292.........26664...........310224.............3609989
....2292......82241.......2986712........108857571..........3969434142
...26664....2986712.....338614056......38343620608.......4336649865709
..310224..108857571...38343620608...13468082968018....4729336342478281
.3609989.3969434142.4336649865709.4729336342478281.5160035123473951638
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 16*a(n-1) -60*a(n-2) +116*a(n-3) -104*a(n-4) +48*a(n-5) -11*a(n-6) +a(n-7)
k=2: [order 24]
k=3: [order 74]
EXAMPLE
Some solutions for n=2 k=4
..0..0..0..2..2....0..0..0..1..1....0..1..2..1..1....2..0..1..2..3
..0..1..1..3..1....0..0..0..1..3....0..1..1..3..3....0..0..1..1..1
..0..1..1..2..2....0..1..2..3..2....0..1..1..3..3....0..1..3..2..3
CROSSREFS
Sequence in context: A006960 A014798 A366278 * A251301 A277792 A178722
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 01 2014
STATUS
approved