login
A251268
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01
14
11, 26, 35, 57, 114, 108, 120, 313, 480, 337, 247, 772, 1667, 2058, 1049, 502, 1775, 4930, 9109, 8812, 3268, 1013, 3894, 13052, 32636, 49872, 37772, 10179, 2036, 8277, 31936, 100843, 217634, 273607, 161906, 31707, 4083, 17224, 73805, 279718, 790734
OFFSET
1,1
COMMENTS
Table starts
.....11.......26........57........120.........247..........502.........1013
.....35......114.......313........772........1775.........3894.........8277
....108......480......1667.......4930.......13052........31936........73805
....337.....2058......9109......32636......100843.......279718.......715685
...1049.....8812.....49872.....217634......790734......2510004......7189937
...3268....37772....273607....1457326.....6247708.....22806904.....73607411
..10179...161906...1501739....9772880....49523566....208452452....760734085
..31707...694042...8244503...65582500...393172015...1910905110...7901650053
..98764..2975162..45265163..440223510..3123669457..17543333688..82288916360
.307641.12753740.248529844.2955392154.24825649060.161181383956.858174176431
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 5*a(n-1) -2*a(n-2) -5*a(n-3) +2*a(n-4)
k=3: [order 10]
k=4: [order 16]
k=5: [order 36]
k=6: [order 62]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3)
n=2: a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5)
n=3: [order 8]
n=4: [order 10]
n=5: [order 12]
n=6: [order 14]
n=7: [order 16]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0..0....0..1..1..1..1....0..0..0..0..1....0..0..1..0..1
..1..1..1..1..1....0..0..0..1..1....0..1..1..1..1....0..0..0..1..1
..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....0..1..1..1..1
..1..1..1..1..1....0..0..0..0..0....0..0..1..1..1....0..0..0..0..0
..0..0..0..0..1....0..0..1..1..1....0..1..0..1..1....0..0..1..1..1
CROSSREFS
Column 1 is A052550(n+2)
Row 1 is A000295(n+3)
Sequence in context: A137015 A260903 A316315 * A174223 A247466 A329809
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 01 2014
STATUS
approved