

A251192


T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with nondecreasing sum of every three consecutive values in every row and column


7



512, 1728, 1728, 5832, 7776, 5832, 19683, 34992, 34992, 19683, 46656, 157464, 209952, 157464, 46656, 110592, 466560, 1259712, 1259712, 466560, 110592, 262144, 1382400, 4665600, 10077696, 4665600, 1382400, 262144, 512000, 4096000, 17280000
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Table starts
.....512.....1728.......5832.......19683........46656........110592
....1728.....7776......34992......157464.......466560.......1382400
....5832....34992.....209952.....1259712......4665600......17280000
...19683...157464....1259712....10077696.....46656000.....216000000
...46656...466560....4665600....46656000....259200000....1440000000
..110592..1382400...17280000...216000000...1440000000....9600000000
..262144..4096000...64000000..1000000000...8000000000...64000000000
..512000..9600000..180000000..3375000000..31500000000..294000000000
.1000000.22500000..506250000.11390625000.124031250000.1350562500000
.1953125.52734375.1423828125.38443359375.488373046875.6204146484375


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..794


FORMULA

Empirical for column k:
k=1: [linear recurrence of order 26; also a polynomial of degree 9 plus a quasipolynomial of degree 7 with period 3]
k=2: [order 35; also a polynomial of degree 12 plus a quasipolynomial of degree 10 with period 3]
k=3: [order 44; also a polynomial of degree 15 plus a quasipolynomial of degree 13 with period 3]
k=4: [order 53; also a polynomial of degree 18 plus a quasipolynomial of degree 16 with period 3]
k=5: [order 62; also a polynomial of degree 21 plus a quasipolynomial of degree 19 with period 3]


EXAMPLE

Some solutions for n=2 k=4
..0..0..0..1..1..1....0..0..0..1..1..1....0..0..0..0..1..0....0..0..0..0..1..1
..1..1..0..1..1..1....0..0..0..0..0..0....1..1..0..1..1..0....1..0..0..1..1..1
..0..0..0..0..0..1....0..1..0..1..1..0....0..1..0..0..1..0....0..0..0..0..1..0
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..0..0..1..0....0..0..0..1..1..1


CROSSREFS

Column 4 is A250594
Column 7 is A250861
Sequence in context: A195092 A235192 A203451 * A251187 A223333 A135273
Adjacent sequences: A251189 A251190 A251191 * A251193 A251194 A251195


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin, Nov 30 2014


STATUS

approved



