login
A251136
Number of (n+1) X (7+1) 0..2 arrays with no 2 X 2 subblock having the sum of its diagonal elements greater than the maximum of its antidiagonal elements.
1
10033, 19548, 30770, 51679, 82431, 135959, 223663, 380641, 662361, 1191797, 2199909, 4160395, 8005403, 15610747, 30712547, 60794301, 120807237, 240664809, 480177897, 958978999, 1916316823, 3830699263, 7659125559, 15315604409
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 13*a(n-2) + 10*a(n-3) + 5*a(n-4) - 14*a(n-5) + 9*a(n-6) - 2*a(n-7) for n>10.
Conjectures from Colin Barker, Nov 26 2018: (Start)
G.f.: x*(10033 - 40650*x + 43911*x^2 + 20853*x^3 - 73278*x^4 + 48222*x^5 - 7753*x^6 - 1661*x^7 + 61*x^8 + 2*x^9) / ((1 - x)^5*(1 + x)*(1 - 2*x)).
a(n) = (68472 + 6724*(-1)^n + 1369*2^(3+n) + 34882*n + 8827*n^2 + 1130*n^3 + 65*n^4) / 12 for n>3.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0..2..0..0..2..0....0..0..0..0..1..0..1..2....0..0..2..0..1..0..2..2
..0..0..0..2..0..0..2..0....1..0..0..0..1..0..1..0....0..0..2..0..1..0..2..0
..1..0..0..2..0..0..2..0....2..0..0..0..1..0..1..0....0..0..2..0..1..0..2..0
..1..0..0..2..0..0..2..0....2..0..0..0..1..0..1..0....0..0..2..0..1..0..2..0
..1..0..0..2..0..0..2..0....2..0..0..0..1..0..1..0....1..0..2..0..1..0..2..0
CROSSREFS
Column 7 of A251137.
Sequence in context: A241880 A245209 A205822 * A213318 A346026 A097648
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 30 2014
STATUS
approved