login
A251113
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements
9
37, 147, 147, 526, 810, 526, 1844, 3616, 3616, 1844, 6544, 15281, 19131, 15281, 6544, 23334, 67518, 99147, 99147, 67518, 23334, 83126, 304870, 549944, 667626, 549944, 304870, 83126, 295938, 1369052, 3097574, 4633551, 4633551, 3097574, 1369052
OFFSET
1,1
COMMENTS
Table starts
......37.......147........526........1844..........6544..........23334
.....147.......810.......3616.......15281.........67518.........304870
.....526......3616......19131.......99147........549944........3097574
....1844.....15281......99147......667626.......4633551.......32006770
....6544.....67518.....549944.....4633551......39326009......336432413
...23334....304870....3097574....32006770.....336432413.....3656310083
...83126...1369052...17154384...219945737....2909254399....39932445704
..295938...6118942...94541640..1519227598...25213072536...430092324035
.1053609..27356256..523362695.10534571961..217873020830..4617478843871
.3751373.122402144.2902098174.72985741167.1882537978094.49985974667101
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-1) -8*a(n-2) +13*a(n-3) -12*a(n-4) +9*a(n-5) -5*a(n-6) +a(n-7)
k=2: [order 14]
k=3: [order 26] for n>27
k=4: [order 52] for n>54
EXAMPLE
Some solutions for n=3 k=4
..1..0..1..2..2....0..1..1..1..2....0..0..0..0..0....1..0..1..0..2
..1..0..1..0..1....1..0..0..0..1....1..0..0..0..0....2..0..1..0..1
..1..0..1..1..0....1..0..0..0..1....1..1..1..0..0....2..0..1..0..1
..2..0..0..1..0....2..2..2..2..0....2..0..1..1..0....2..0..1..0..0
CROSSREFS
Sequence in context: A262921 A031690 A157324 * A251106 A141968 A142656
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 30 2014
STATUS
approved