%I #8 Nov 24 2018 11:57:11
%S 192,616,1165,2362,4379,8284,15411,29142,55429,106880,207889,407938,
%T 805159,1596500,3175015,6327486,12626625,25218520,50394485,100737802,
%U 201414163,402755596,805425275,1610750182,3221383389,6442631664
%N Number of (n+1) X (3+1) 0..2 arrays with no 2 X 2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements.
%H R. H. Hardin, <a href="/A251083/b251083.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) - 13*a(n-2) + 10*a(n-3) + 5*a(n-4) - 14*a(n-5) + 9*a(n-6) - 2*a(n-7) for n>8.
%F Empirical g.f.: x*(192 - 536*x - 35*x^2 + 1460*x^3 - 1768*x^4 + 674*x^5 + 85*x^6 - 82*x^7) / ((1 - x)^5*(1 + x)*(1 - 2*x)). - _Colin Barker_, Nov 24 2018
%e Some solutions for n=4:
%e ..0..0..1..1....0..0..0..2....1..1..2..2....0..0..0..2....1..0..0..2
%e ..0..0..0..0....1..0..0..1....0..0..0..0....0..0..0..2....1..0..0..2
%e ..0..0..0..0....2..0..0..1....1..1..1..1....1..0..0..0....1..0..0..2
%e ..0..0..0..0....2..0..0..1....0..0..0..0....1..0..0..0....1..0..0..2
%e ..1..1..1..1....2..0..0..1....2..2..1..1....2..1..1..1....2..0..0..0
%Y Column 3 of A251088.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 29 2014