login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251019 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the sum of its diagonal elements less than the maximum of its antidiagonal elements 9
63, 423, 423, 2828, 6653, 2828, 18910, 105897, 105897, 18910, 126468, 1691169, 4006992, 1691169, 126468, 845838, 27018053, 151364054, 151364054, 27018053, 845838, 5657125, 431623476, 5710752444, 13508173078, 5710752444, 431623476 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

......63........423..........2828............18910...............126468

.....423.......6653........105897..........1691169.............27018053

....2828.....105897.......4006992........151364054...........5710752444

...18910....1691169.....151364054......13508173078........1205414504630

..126468...27018053....5710752444....1205414504630......254604954671538

..845838..431623476..215399006284..107601568615993....53785005221582139

.5657125.6895174650.8124335802103.9606281958966442.11361245256068263101

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..180

FORMULA

Empirical for column k:

k=1: a(n) = 9*a(n-1) -18*a(n-2) +18*a(n-3) -7*a(n-4) +a(n-5)

k=2: [order 14]

k=3: [order 34]

k=4: [order 92]

EXAMPLE

Some solutions for n=2 k=4

..0..0..0..2..1....0..0..2..2..2....0..2..2..2..1....0..1..2..2..1

..0..2..2..2..1....0..0..2..0..0....0..2..0..2..1....0..2..2..2..0

..1..2..2..1..0....1..1..2..0..0....0..2..1..2..2....1..2..0..0..0

CROSSREFS

Sequence in context: A038993 A068022 A131993 * A251012 A092050 A055817

Adjacent sequences:  A251016 A251017 A251018 * A251020 A251021 A251022

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Nov 29 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 22:17 EDT 2019. Contains 324200 sequences. (Running on oeis4.)