login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250916 E.g.f.: exp(C(x)^2 - 1) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers, A000108. 0
1, 2, 14, 152, 2236, 41512, 930904, 24474368, 738241424, 25132379552, 953267419744, 39867845243008, 1822779782497216, 90453927667906688, 4842249786763758464, 278167945047964156928, 17069371221016503644416, 1114374972408995525243392, 77126208846034435924819456 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..18.

FORMULA

E.g.f.: exp( (1-2*x-2*x^2 - sqrt(1-4*x))/(2*x^2) ).

a(n) ~ 2^(2*n+5/2) * n^(n-1) / exp(n-3). - Vaclav Kotesovec, Aug 22 2017

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 14*x^2/2! + 152*x^3/3! + 2236*x^4/4! + 41512*x^5/5! +...

such that log(A(x)) = C(x)^2 - 1,

log(A(x)) = 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 + 1430*x^7 +...

where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.

PROG

(PARI) {a(n)=local(C=1); for(i=0, n, C=1+x*C^2 +x*O(x^n)); n!*polcoeff(exp(C^2-1), n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = n!*polcoeff(exp((1-2*x - sqrt(1-4*x + x^3*O(x^n)))/(2*x^2) - 1), n)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A251568, A250917, A000108.

Sequence in context: A087132 A036079 A121227 * A211398 A219430 A301931

Adjacent sequences:  A250913 A250914 A250915 * A250917 A250918 A250919

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 15 20:07 EST 2019. Contains 320138 sequences. (Running on oeis4.)