login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250877 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)+x(i-1,j) in the j direction 16
90, 288, 440, 678, 1456, 2002, 1328, 3442, 6812, 8736, 2306, 6728, 16262, 30360, 37130, 3680, 11644, 31928, 73122, 131068, 155080, 5518, 18520, 55386, 144248, 317878, 553736, 640002, 7888, 27686, 88212, 250964, 629528, 1350002, 2304492 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

.......90.......288.......678......1328.......2306.......3680.......5518

......440......1456......3442......6728......11644......18520......27686

.....2002......6812.....16262.....31928......55386......88212.....131982

.....8736.....30360.....73122....144248.....250964.....400496.....600070

....37130....131068....317878....629528....1097986....1755220....2633198

...155080....553736...1350002...2681528....4685964....7500960...11264166

...640002...2304492...5640102..11227928...19649066...31484612...47315662

..2619056...9488920..23289922..46440248...81358084..130461616..196169030

.10653370..38773148..95366678.190392728..333810066..535577460..805653678

.43144920.157554216.388124562.775558328.1360557884.2183825600.3286063846

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..160

FORMULA

Empirical: T(n,k) = (((62/3)*k^3+52*k^2+(130/3)*k+12)*4^n -((45/2)*k^3+(81/2)*k^2+18*k)*3^n +(9*k^3-9*k)*2^n +((5/6)*k^3-(5/2)*k^2+(8/3)*k))/3

Empirical for column k:

k=1: a(n) = 8*a(n-1) -19*a(n-2) +12*a(n-3); a(n) = (128*4^n-81*3^n+1)/3

k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (472*4^n-378*3^n+54*2^n+2)/3

k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (1168*4^n-1026*3^n+216*2^n+8)/3

k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (2340*4^n-2160*3^n+540*2^n+24)/3

k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4112*4^n-3915*3^n+1080*2^n+55)/3

k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (6608*4^n-6426*3^n+1890*2^n+106)/3

k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (9952*4^n-9828*3^n+3024*2^n+182)/3

Empirical for row n:

n=1: a(n) = (34/3)*n^3 + 28*n^2 + (104/3)*n + 16

n=2: a(n) = 55*n^3 + 155*n^2 + 166*n + 64

n=3: a(n) = (788/3)*n^3 + 744*n^2 + (2218/3)*n + 256

n=4: a(n) = (3613/3)*n^3 + 3343*n^2 + (9494/3)*n + 1024

n=5: a(n) = 5328*n^3 + 14468*n^2 + 13238*n + 4096

n=6: a(n) = (68825/3)*n^3 + 61155*n^2 + (163798/3)*n + 16384

n=7: a(n) = (290548/3)*n^3 + 254464*n^2 + (669458/3)*n + 65536

EXAMPLE

Some solutions for n=4 k=4

..0..0..0..0..1....0..0..0..1..1....0..0..0..0..0....1..1..1..1..1

..2..2..2..2..3....2..2..2..3..3....2..2..3..3..3....0..0..0..0..0

..2..2..2..2..3....1..1..2..3..3....1..1..2..3..3....2..2..2..2..2

..0..1..1..1..2....0..0..1..2..2....1..1..2..3..3....0..2..2..2..2

..0..1..1..1..3....0..0..2..3..3....0..0..1..3..3....0..2..2..3..3

CROSSREFS

Sequence in context: A231961 A237131 A255784 * A250878 A027621 A331259

Adjacent sequences:  A250874 A250875 A250876 * A250878 A250879 A250880

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Nov 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 17:45 EDT 2020. Contains 337444 sequences. (Running on oeis4.)