login
A250660
Number of (6+1) X (n+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.
1
319, 574, 893, 1276, 1723, 2234, 2809, 3448, 4151, 4918, 5749, 6644, 7603, 8626, 9713, 10864, 12079, 13358, 14701, 16108, 17579, 19114, 20713, 22376, 24103, 25894, 27749, 29668, 31651, 33698, 35809, 37984, 40223, 42526, 44893, 47324, 49819, 52378, 55001
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 32*n^2 + 159*n + 128.
Conjectures from Colin Barker, Nov 15 2018: (Start)
G.f.: x*(319 - 383*x + 128*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
EXAMPLE
Some solutions for n=4:
..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....1..1..0..0..0
..1..1..1..1..1....0..0..0..0..0....1..1..1..1..1....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....1..1..1..1..1....1..1..1..1..1
..0..0..0..0..0....0..0..0..0..0....1..1..1..1..1....0..0..0..0..0
..1..1..1..1..1....0..0..0..0..0....1..1..1..1..1....0..0..0..0..0
..0..0..0..0..1....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1
..0..0..0..0..1....0..1..1..1..1....1..1..1..1..1....0..0..0..0..0
CROSSREFS
Row 6 of A250656.
Sequence in context: A126838 A153048 A053020 * A252410 A064905 A293921
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 26 2014
STATUS
approved