

A250653


Number of (n+1)X(5+1) 0..1 arrays with nondecreasing x(i,j)x(i,j1) in the i direction and nondecreasing min(x(i,j),x(i1,j)) in the j direction


2



49, 103, 211, 427, 859, 1723, 3451, 6907, 13819, 27643, 55291, 110587, 221179, 442363, 884731, 1769467, 3538939, 7077883, 14155771, 28311547, 56623099, 113246203, 226492411, 452984827, 905969659, 1811939323, 3623878651
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Column 5 of A250656.
Since one edge length of the array is fixed, and the constraint is a Markovtype correlation between fixedwidth lengths of the other edge, the generating function is computable by the usual transfer matrix method and therefore a rational polynomial. That predicts that there is a linear recurrence.  R. J. Mathar, May 25 2018


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210


FORMULA

Empirical: a(n) = 3*a(n1)  2*a(n2); also a(n) = 2^(n1)*25 + (5*2^(n1)1)*5 + 2^(n+1).
It appears that a(n) = 27*2^n5, which would make this coincide with A304387.  N. J. A. Sloane, May 13 2018


EXAMPLE

Some solutions for n=4
..1..1..1..0..0..0....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..0..0
..0..0..0..0..0..0....1..1..1..1..1..1....1..1..1..1..1..1....0..0..0..0..0..0
..1..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1
..1..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1
..0..0..0..0..1..1....1..1..1..1..1..1....0..0..0..0..1..1....0..0..0..1..1..1


CROSSREFS

Cf. A304387.
Sequence in context: A019547 A228878 A067673 * A045253 A088868 A044236
Adjacent sequences: A250650 A250651 A250652 * A250654 A250655 A250656


KEYWORD

nonn


AUTHOR

R. H. Hardin, Nov 26 2014


STATUS

approved



