login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1) X (3+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.
1

%I #7 Nov 15 2018 08:38:28

%S 57,140,297,592,1153,2236,4353,8528,16809,33292,66169,131824,263025,

%T 525308,1049745,2098480,4195801,8390284,16779081,33556496,67111137,

%U 134220220,268438177,536873872,1073745033,2147487116,4294971033

%N Number of (n+1) X (3+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.

%H R. H. Hardin, <a href="/A250606/b250606.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4).

%F Empirical: a(n) = 64*2^(n-1) + 5*n^2 + 4*n -16.

%F Empirical g.f.: x*(57 - 145*x + 110*x^2 - 32*x^3) / ((1 - x)^3*(1 - 2*x)). - _Colin Barker_, Nov 15 2018

%e Some solutions for n=6:

%e ..1..0..0..0....1..1..0..0....1..1..0..0....1..1..0..0....1..1..1..0

%e ..1..1..1..1....1..1..1..1....1..1..0..0....1..1..0..1....1..1..1..1

%e ..1..1..1..1....0..0..0..1....1..1..0..0....1..1..0..1....0..0..0..0

%e ..0..0..0..0....0..0..0..1....1..1..0..0....1..1..0..1....0..0..0..0

%e ..0..0..0..0....0..0..0..1....1..1..1..1....0..0..0..1....0..0..0..0

%e ..1..1..1..1....0..0..0..1....0..0..0..0....0..0..0..1....1..1..1..1

%e ..0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..1....0..0..0..1

%Y Column 3 of A250611.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 26 2014