The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A250478 Number of times prime(n) occurs as the least prime factor among numbers 1 .. prime(n)^4: a(n) = A078898(A030514(n)). 5
 8, 14, 42, 92, 305, 455, 944, 1238, 2085, 3995, 4710, 7757, 10273, 11558, 14742, 20701, 28019, 30444, 39680, 46534, 49856, 62350, 71394, 86977, 111352, 124421, 130649, 145076, 151939, 167759, 236113, 257098, 291830, 302611, 370060, 382610, 427214, 475078 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Jon E. Schoenfield, Table of n, a(n) for n = 1..100 FORMULA a(n) = A078898(A030514(n)). a(1) = 1, a(n) = sum_{d | A002110(n-1)} moebius(d) * floor(prime(n)^3 / d). [Follows when A030514, prime(n)^4 is substituted to the similar formula given for A078898. Here A002110(n) gives the product of the first n primes. Because the latter is always squarefree, one could use here also Liouville's lambda (A008836) instead of Moebius mu (A008683).] PROG (PARI) allocatemem(234567890); A002110(n) = prod(i=1, n, prime(i)); A250478(n) = { my(p3); p3 = (prime(n)^3); sumdiv(A002110(n-1), d, (moebius(d)*(p3\d))); }; for(n=1, 23, print1(A250478(n), ", ")); (Scheme) (define (A250478 n) (A078898 (A030514 n))) CROSSREFS Column 8 of A249822. Cf. also A250474 (column 4), A250477 (column 6). Cf. A002110, A030514, A030078, A078898. Sequence in context: A257709 A121866 A301961 * A059676 A242198 A111050 Adjacent sequences:  A250475 A250476 A250477 * A250479 A250480 A250481 KEYWORD nonn AUTHOR Antti Karttunen, Dec 14 2014 EXTENSIONS More terms from Jon E. Schoenfield, Dec 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 13:18 EST 2020. Contains 332306 sequences. (Running on oeis4.)