This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A250469 a(1) = 1; and for n > 1, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1, where A055396(n) is the index of smallest prime dividing n. 45
 1, 3, 5, 9, 7, 15, 11, 21, 25, 27, 13, 33, 17, 39, 35, 45, 19, 51, 23, 57, 55, 63, 29, 69, 49, 75, 65, 81, 31, 87, 37, 93, 85, 99, 77, 105, 41, 111, 95, 117, 43, 123, 47, 129, 115, 135, 53, 141, 121, 147, 125, 153, 59, 159, 91, 165, 145, 171, 61, 177, 67, 183, 155, 189, 119, 195, 71, 201, 175, 207, 73, 213, 79, 219, 185, 225, 143, 231, 83, 237, 205, 243, 89, 249, 133, 255 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Permutation of odd numbers. For n >= 2, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1. In other words, a(n) tells which number is located immediately below n in the sieve of Eratosthenes (see A083140, A083221) in the same column of the sieve that contains n. A250471(n) = (a(n)+1)/2 is a permutation of natural numbers. Coincides with A003961 in all terms which are primes. - M. F. Hasler, Sep 17 2016. Note: primes are a proper subset of A280693 which gives all n such that a(n) = A003961(n). - Antti Karttunen, Mar 08 2017 LINKS Antti Karttunen, Table of n, a(n) for n = 1..5002 FORMULA a(1) = 1, a(n) = A083221(A055396(n)+1, A078898(n)). a(n) = A249817(A003961(A249818(n))). Other identities. For all n >= 1: A250470(a(n)) = A268674(a(n)) = n. [A250470 and A268674 provide left inverses for this function.] a(2n) = A016945(n-1). [Maps even numbers to the numbers of form 6n+3, in monotone order.] a(A016945(n-1)) = A084967(n). [Which themselves are mapped to the terms of A084967, etc. Cf. the Example section of A083140.] a(A000040(n)) = A000040(n+1). [Each prime is mapped to the next prime.] For all n >= 2, A055396(a(n)) = A055396(n)+1. [A more general rule.] A046523(a(n)) = A283465(n). - Antti Karttunen, Mar 08 2017 MATHEMATICA a = 1; a[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]]; Array[a, 100] (* Jean-François Alcover, Mar 08 2016 *) g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@#], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4]] (* Michael De Vlieger, Mar 08 2017, Version 10 *) PROG (Scheme, two alternatives) (define (A250469 n) (A249817 (A003961 (A249818 n)))) (define (A250469 n) (if (= 1 n) n (A083221bi (+ (A055396 n) 1) (A078898 n)))) ;; Code for A083221bi given in A083221. CROSSREFS Cf. A000040, A003961, A016945, A046523, A055396, A078898, A083140, A083221, A084967, A249744, A249810, A249820, A249817, A249818, A250471, A266645, A280692, A280693, A283465. Cf. A250470, A268674 (left inverses, the latter is simpler). Sequence in context: A081761 A280702 A269379 * A003961 A100463 A166722 Adjacent sequences:  A250466 A250467 A250468 * A250470 A250471 A250472 KEYWORD nonn AUTHOR Antti Karttunen, Dec 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 08:13 EDT 2019. Contains 327214 sequences. (Running on oeis4.)