login
A250420
Number of length 3+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.
1
10, 38, 99, 205, 370, 606, 927, 1345, 1874, 2526, 3315, 4253, 5354, 6630, 8095, 9761, 11642, 13750, 16099, 18701, 21570, 24718, 28159, 31905, 35970, 40366, 45107, 50205, 55674, 61526, 67775, 74433, 81514, 89030, 96995, 105421, 114322, 123710, 133599
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
Empirical for n mod 2 = 0: a(n) = (13/6)*n^3 + (13/4)*n^2 + (10/3)*n + 1.
Empirical for n mod 2 = 1: a(n) = (13/6)*n^3 + (13/4)*n^2 + (10/3)*n + (5/4).
Empirical g.f.: x*(10 + 8*x + 5*x^2 + 4*x^3 - x^4) / ((1 - x)^4*(1 + x)). - Colin Barker, Nov 14 2018
EXAMPLE
Some solutions for n=6:
..0....4....3....5....0....2....4....0....5....0....4....1....2....4....5....1
..2....2....1....2....5....4....2....0....0....4....4....1....2....6....4....0
..0....2....1....4....2....4....5....1....3....1....4....2....5....2....6....3
..5....0....0....4....4....2....4....0....0....4....0....3....0....6....0....0
CROSSREFS
Row 3 of A250419.
Sequence in context: A034859 A197060 A257051 * A136840 A027982 A064603
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2014
STATUS
approved