login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250411 Palindromic in bases 10 and 27. 21
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 252, 616, 757, 838, 919, 10301, 13031, 15951, 17871, 65856, 1197911, 2287822, 4385834, 5475745, 5549455, 6278726, 6639366, 7368637, 7573757, 8663668, 8737378, 9392939, 9466649, 9827289, 67166176, 214171412, 609808906, 836040638, 2132882312, 2487997842 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..84

MATHEMATICA

palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; genPal[n_] := Block[{id = IntegerDigits@ n, insert = {{}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; k = 1; lst = {0, 1, 2, 3,  4, 5, 6, 7, 8, 9}; While[k < 1000001, s = Select[ genPal[k], palQ[#, 27] &]; If[s != {}, AppendTo[lst, s]; Print@ s; lst = Sort@ Flatten@ lst]; k++]; lst

b1=10; b2=36; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)

PROG

(MAGMA) [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 27) eq Reverse(Intseq(n, 27))]; // Vincenzo Librandi, Nov 23 2014

CROSSREFS

Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A099165, A250412.

Sequence in context: A201064 A103357 A055931 * A250410 A250409 A303002

Adjacent sequences:  A250408 A250409 A250410 * A250412 A250413 A250414

KEYWORD

nonn,base

AUTHOR

Robert G. Wilson v, Nov 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 16:33 EDT 2019. Contains 321510 sequences. (Running on oeis4.)