%I #4 Nov 19 2014 07:20:01
%S 648,46941,682576,5156313,26422104,104374957,341862816,971811153,
%T 2472291496,5751557757,12430964976,25260273961,48707132280,
%U 89770507149,159076528960,272324585505,452161586376,730573094557,1151891497872
%N Number of length 7+5 0..n arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms
%C Row 7 of A250336
%H R. H. Hardin, <a href="/A250343/b250343.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (202/105)*n^9 + (249/10)*n^8 + (217/2)*n^7 + 224*n^6 + 267*n^5 + (2031/10)*n^4 + (1301/42)*n^3 - 129*n^2 - (422/5)*n + 1
%e Some solutions for n=2
%e ..0....1....2....2....0....0....0....0....0....1....0....1....2....2....2....1
%e ..0....1....2....1....2....1....2....1....0....0....0....2....0....1....2....0
%e ..0....2....1....1....1....1....0....1....2....2....2....1....1....2....0....0
%e ..0....1....0....0....1....0....1....1....1....0....1....2....2....0....1....0
%e ..1....1....0....2....2....1....0....0....2....1....1....0....2....1....0....0
%e ..2....2....1....0....1....1....0....2....1....1....2....0....2....1....1....1
%e ..0....0....1....2....1....2....0....0....1....2....1....1....2....2....1....0
%e ..0....0....1....1....1....2....0....1....1....1....1....1....2....1....1....0
%e ..0....1....2....1....1....0....0....1....0....1....1....1....1....0....2....0
%e ..0....1....1....1....1....1....1....2....1....2....1....2....2....1....0....2
%e ..2....1....0....1....0....1....2....0....1....1....0....2....2....2....0....0
%e ..2....1....1....2....2....1....0....2....1....0....2....1....1....0....2....1
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 19 2014