login
Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 8).
3

%I #11 Sep 03 2021 01:59:18

%S 1,1,1,1,1,1,1,1,1,8,44,164,494,1286,3002,6434,12869,194464,1925200,

%T 12394480,62224336,261667792,959874928,3154435120,9464040829,

%U 210311057024,3007458113984,27514536974144,193384741516784,1123028832217904,5617639404687824

%N Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 8).

%H Alois P. Heinz, <a href="/A250285/b250285.txt">Table of n, a(n) for n = 0..500</a>

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

%p `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 8)), j=1..u),

%p add(b(u+j-1, o-j, irem(t+1, 8)), j=1..o)))

%p end:

%p a:= n-> b(n, 0$2):

%p seq(a(n), n=0..35);

%t nmax = 30; CoefficientList[Series[1 + Sum[(x^(8 - k) * HypergeometricPFQ[{1}, {9/8 - k/8, 5/4 - k/8, 11/8 - k/8, 3/2 - k/8, 13/8 - k/8, 7/4 - k/8, 15/8 - k/8, 2 - k/8}, -x^8/16777216])/(8 - k)!, {k, 0, 7}] / HypergeometricPFQ[{}, {1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8}, -x^8/16777216], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Apr 21 2021 *)

%Y Row n=8 of A181937.

%K nonn

%O 0,10

%A _Alois P. Heinz_, Nov 16 2014