login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250261 Number A(n,k) of permutations p of [n] such that p(i) > p(i+1) iff i = 1 + k*m for some m >= 0; square array A(n,k), n>=0, k>=0, read by antidiagonals. 10
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 5, 1, 5, 1, 1, 1, 2, 3, 16, 1, 6, 1, 1, 1, 2, 3, 11, 61, 1, 7, 1, 1, 1, 2, 3, 4, 40, 272, 1, 8, 1, 1, 1, 2, 3, 4, 19, 99, 1385, 1, 9, 1, 1, 1, 2, 3, 4, 5, 78, 589, 7936, 1, 10, 1, 1, 1, 2, 3, 4, 5, 29, 217, 3194, 50521, 1, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

A(n,0) = A(n,k) for k>=n-1 and n>0.

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764, 2013

A. Mendes and J. Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page

R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, 2009

EXAMPLE

Square array A(n,k) begins:

1, 1,    1,   1,   1,   1,  1, 1, 1, ...

1, 1,    1,   1,   1,   1,  1, 1, 1, ...

1, 1,    1,   1,   1,   1,  1, 1, 1, ...

2, 1,    2,   2,   2,   2,  2, 2, 2, ...

3, 1,    5,   3,   3,   3,  3, 3, 3, ...

4, 1,   16,  11,   4,   4,  4, 4, 4, ...

5, 1,   61,  40,  19,   5,  5, 5, 5, ...

6, 1,  272,  99,  78,  29,  6, 6, 6, ...

7, 1, 1385, 589, 217, 133, 41, 7, 7, ...

MAPLE

b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1,

     `if`(t=1, add(b(u-j, o+j-1, irem(t+1, k), k), j=1..u),

               add(b(u+j-1, o-j, irem(t+1, k), k), j=1..o)))

    end:

A:= (n, k)-> b(0, n, 0, `if`(k=0, n, k)):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, If[t == 1, Sum[ b[u-j, o+j-1, Mod[t+1, k], k], {j, 1, u}], Sum[ b[u+j-1, o-j, Mod[t+1, k], k], {j, 1, o}] ] ] ; A[n_, k_] := b[0, n, 0, If[k == 0, n, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Feb 03 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=1-10 give: A000012, A000111, A249402, A250259, A250260, A250262, A250263, A250264, A250265, A250266.

A(n+3,n+1) = A028387(n).

Sequence in context: A137773 A175010 A107454 * A063669 A211005 A162154

Adjacent sequences:  A250258 A250259 A250260 * A250262 A250263 A250264

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Nov 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 12:00 EST 2018. Contains 299452 sequences. (Running on oeis4.)